How to apply majority voting for classification ensemble in Matlab?

45 Ansichten (letzte 30 Tage)
I have five classifiers SVM, random forest, naive Bayes, decision tree, KNN,I attached my Matlab code. I want to combine the results of these five classifiers on a dataset by using majority voting method and I want to consider all these classifiers have the same weight. because the number of the tests is calculated 5 so the output of each classifier is 5 labels(class labels in this example is 1 or 2). I'll be gratefull to have your opinions
clear all
close all
clc
load data.mat;
data=data;
[n,m]=size(data);
rows=(1:n);
test_count=floor((1/6)*n);
sum_ens=0;sum_result=0;
test_rows=randsample(rows,test_count);
train_rows=setdiff(rows,test_rows);
test=data(test_rows,:);
train=data(train_rows,:);
xtest=test(:,1:m-1);
ytest=test(:,m);
xtrain=train(:,1:m-1);
ytrain=train(:,m);
%-----------svm------------------
svm=svm1(xtest,xtrain,ytrain);
%-------------random forest---------------
rforest=randomforest(xtest,xtrain,ytrain);
%-------------decision tree---------------
DT=DTree(xtest,xtrain,ytrain);
%---------------bayesian---------------------
NBModel = NaiveBayes.fit(xtrain,ytrain, 'Distribution', 'kernel');
Pred = NBModel.predict(xtest);
dt=Pred;
%--------------KNN----------------
knnModel=fitcknn(xtrain,ytrain,'NumNeighbors',4);
pred=knnModel.predict(xtest);
sk=pred;
how can I apply majority voting directly on these outputs of classifiers in Matlab?
Thanks very much

Akzeptierte Antwort

Ahmad Obeid
Ahmad Obeid am 24 Mai 2019
Bearbeitet: Ahmad Obeid am 21 Okt. 2019
I don't think that there's an existing function that does that for you, so you have to build your own. Here is a suggested method:
  • Assuming you have your five prediction arrays from your five different classifiers, and
  • all prediction arrays have the same size = length(test_rows), and
  • you have 2 classes: 1 & 2, you can do the following:
% First we concatenate all prediciton arrays into one big matrix.
% Make sure that all prediction arrays are of the same type, I am assumming here that they
% are type double. I am also assuming that all prediction arrays are column vectors.
Prediction = [svm,rforest,DTree,dt,sk];
Final_decision = zeros(length(test_rows),1);
all_results = [1,2]; %possible outcomes
for row = 1:length(test_rows)
election_array = zeros(1,2);
for col = 1:5 %your five different classifiers
election_array(Prediction(row,col)) = ...
election_array(Prediction(row,col)) + 1;
end
[~,I] = max(election_array);
Final_decision(row) = all_results(I);
end
Hope this helps.
Ahmad
  7 Kommentare
Mona Al-Kharraz
Mona Al-Kharraz am 4 Apr. 2020
Thanks Mr. Ahmad it is working for me.
doaa khalil
doaa khalil am 12 Aug. 2020
hi Mr. Ahmed i want to apply majority voting for two classification model .Can you help me?
unzip('Preprocessing.zip');
imds = imageDatastore('Preprocessing', ...
'IncludeSubfolders',true, ...
'LabelSource','foldernames');
%Use countEachLabel to summarize the number of images per category.
tbl1 = countEachLabel(imds)
%Divide the data into training and validation data sets
rng('default') % For reproduciblity
[trainingSet, testSet] = splitEachLabel(imds, 0.3, 'randomize');
%Load Pretrained Network1
net1 = alexnet;
% Inspect the first layer
net1.Layers(1)
% Create augmentedImageDatastore from training and test sets to resize
% images in imds to the size required by the network1.
imageSize1 = net1.Layers(1).InputSize;
augmentedTrainingSet1 = augmentedImageDatastore(imageSize1, trainingSet, 'ColorPreprocessing', 'gray2rgb');
augmentedTestSet1 = augmentedImageDatastore(imageSize1, testSet, 'ColorPreprocessing', 'gray2rgb');
featureLayer1 = 'fc7';
trainingFeatures1 = activations(net1, augmentedTrainingSet1, featureLayer1, ...
'MiniBatchSize', 32, 'OutputAs', 'columns');
%Load Pretrained Network2
net2 = resnet50;
% Visualize the first section of the network.
figure
plot(net2)
title('First section of ResNet-50')
set(gca,'YLim',[150 170]);
% Inspect the first layer
net2.Layers(1)
% Create augmentedImageDatastore from training and test sets to resize
% images in imds to the size required by the network2.
imageSize2 = net2.Layers(1).InputSize;
augmentedTrainingSet2 = augmentedImageDatastore(imageSize2, trainingSet, 'ColorPreprocessing', 'gray2rgb');
augmentedTestSet2 = augmentedImageDatastore(imageSize2, testSet, 'ColorPreprocessing', 'gray2rgb');
featureLayer2 = 'fc1000';
trainingFeatures2 = activations(net2, augmentedTrainingSet2, featureLayer2, ...
'MiniBatchSize', 32, 'OutputAs', 'columns');
%% %% Train A Multiclass SVM Classifier Using CNN1 Features
% Get training labels from the trainingSet
trainingLabels = trainingSet.Labels;
% Train multiclass SVM classifier using a fast linear solver, and set
% 'ObservationsIn' to 'columns' to match the arrangement used for training
% features.
classifier1 = fitcecoc(newfeatures, trainingLabels, ...
'Learners', 'Linear', 'Coding', 'onevsall', 'ObservationsIn', 'columns');
% Extract test features using the CNN1
testFeatures1 = activations(net1, augmentedTestSet1, featureLayer1, ...
'MiniBatchSize', 32, 'OutputAs', 'columns');
% Pass CNN image features to trained classifier
predictedLabels1 = predict(classifier1, testFeatures1, 'ObservationsIn', 'columns');

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (3)

Li Ai
Li Ai am 30 Mär. 2021
I think just put the outputs of five models together as a matrix, then use mode function

Sinan Islam
Sinan Islam am 12 Dez. 2020
Matlab should consider adding vote ensemble.

Abida Ashraf
Abida Ashraf am 16 Okt. 2019
How three classifer like fitcnb,fitcecoc and fitensemble can be used to get average results.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by