Computational time of qr, svd and eig?
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
How does the time for qr depend on the dimensions of the matrix m and n (does it depend on on the type of linear systems: overdetermined and underdetermined?) How about svd and eig? Does the time depend on whether you ask only for the eigenvalues (as in E=eig(A)) or also for the eigenvectors (as in [V,E]=eig(A))?
4 Kommentare
Antworten (1)
KSSV
am 3 Mai 2019
%% Computational time for qr.
clear all; clc; close all;
m = 700;
n = 500;
N = 100 ;
t11 = zeros(N,1) ;
t21 = zeros(N,1) ;
for k = 1:N
B1 = randn(m,n); % m>n
B2 = randn(n,m); % m<n
t10 = tic;
[Q1,R1] = qr(B1);
t11(k) = toc(t10);
t20 = tic;
[Q2,R2] = qr(B2);
t21(k) = toc(t20);
end
mean(t11)
mean(t21)
j = 1:N;
figure(1);
plot(j,t11,'r',j,t21,'b')
xlabel('# of trial')
ylabel('Elapsed time')
legend('qr for m<n','qr for m>n')
axis([0 100 0 0.05])
1 Kommentar
Siehe auch
Kategorien
Mehr zu Linear Algebra finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!