Second oder ode solution with euler methods

13 Ansichten (letzte 30 Tage)
Bayram FURKAN TORA
Bayram FURKAN TORA am 1 Mai 2019
Kommentiert: James Tursa am 12 Mär. 2020
??̈+ ??̇ + ?? = ???(??) where, ?(? = ?) = ? and ?̇(? = ?) = 2 ? values in the domain of [? ??]. with a step size of ?? = ?. ?. How can I solve this system using euler methods ?
  4 Kommentare
Erivelton Gualter
Erivelton Gualter am 1 Mai 2019
Hello Bayram,
You can easily use the ODE solvers from Matlab. Check the link bellow:
Also, you can write your own method. Check the follow link:
Try to implement it and if you face a problem, share here your code and I will be glad to help.
Bayram FURKAN TORA
Bayram FURKAN TORA am 1 Mai 2019
Thank you James

Melden Sie sich an, um zu kommentieren.

Antworten (1)

James Tursa
James Tursa am 1 Mai 2019
Bearbeitet: James Tursa am 2 Mai 2019
Rewrite your 2nd order equation as a pair of first order equations, then use Euler method on a 2-element vector. I.e.,
Define your 2-element state vector y as
y(1) is defined to be x
y(2) is defined to be xdot
The derivative of y(1) is y(2) by definition.
The derivative of y(2) can be found by solving your 2nd order DE for xdotdot.
See the van der Pol equation example in the doc here for an example of turning a 2nd order DE into a pair of 1st order DEs:
You can essentially use your 1st order Euler code as an outline for this 2nd order system. Simply replace the scalar state with a 2-element vector state in your code.
  2 Kommentare
Pranay Harjai
Pranay Harjai am 12 Mär. 2020
How to replace the scalar state with a 2-element vector state
James Tursa
James Tursa am 12 Mär. 2020
Open up a new question, show your current code, and then we can show you how to modify it for a 2-element state vector.

Melden Sie sich an, um zu kommentieren.

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by