Convergence of Heat Equation?

1 Ansicht (letzte 30 Tage)
Qudsiya  Irum
Qudsiya Irum am 23 Apr. 2019
%% Ut=Uxx,
%%solution: U(x,t)=sin(2*pi*x)*exp(-(2*pi).^2*t),
%%I.C : U(x,0)= sin(2*pi*x)
%%B.C: U(0,t)=U(1,t)=0,
L = 1 ; %Length of Domain
t_final = 0.1; % time limit
N = 32; % no of elements
dx = 1/N; % step size
dt = 0.001
% x = 0:dx:L; %spatial discretization
x = linspace(0,L,N+1);
t = 0:dt:t_final; %temporal discretization
a= length(x);
b = length(t);
U = zeros(1,b);
W = zeros(a,b);
X = sin(2*pi*x);
W(:,1) =X;
W(:, b)=0;
% t=0;
T = zeros(b,1);
T(1) = 0;
for i=1:length(t)
T= T+dt;
U = sin(2*pi*x)*(exp((-(2*pi).^2)*T(i,:)));
W(:,i) = U;
X = U;
U(1) =0;
U(end)=0;
T(i) = T(1);
figure(1)
plot(x,U)
hold on
end
%% Backward Euler for FEM solution
xx = linspace(0,L,N+1); %Fem spatial discretization
% xx = 0:dx:L;
nx = length(xx); %total nodes
M = spdiags([(dx/6)*ones(nx,1), (2*dx/3)*ones(nx,1), (dx/6)*ones(nx,1)],[-1, 0,1],nx,nx) ; %% Mass matrix
A = spdiags([(-1/dx)*ones(nx,1), (2/dx)*ones(nx,1), (-1/dx)*ones(nx,1)],[-1, 0, 1],nx,nx) ;%% Stiffness matrix
delta_t = 0.001;
m = t_final/delta_t;
delta_t = t_final/m;
tspan = 0:delta_t:t_final;
% store solution for each time in matrix u
u = zeros(nx,m+1);
tvec = zeros(1,m+1);
U_tk = sin(2*pi*xx);
u(:,1) = U_tk;
tt = 0 ;
tvec(1) = tt;
tt = 0;
b = zeros(1,nx); % Neumann boundary condition
b(nx) = 0;
for nt = 1:m
tt = tt+delta_t;
c = U_tk + b;
w = (M+delta_t*A)\M;
FEM = c*w;
FEM(1) = 0;
FEM(end)= 0;
u(:, nt) = FEM;
% for next time step:
U_tk = FEM;
tvec(nt) = tt;
figure(2)
plot(xx,FEM)
end
plot(x,U-FEM); )
ERROR = sqrt(sum( dx*(U-FEM).^2 ))

Antworten (0)

Kategorien

Mehr zu Heat and Mass Transfer finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by