What is the running time of the algorithm
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have this code:
n = length(V);
S = zeros(n,2*n);
for i = 1:n
for j = 2:i
for k = 1:n
S(i,j+k) = V(i);
end
end
end
i am trying to find the theoretical complexity. This is what i did thus far
Line 1: 1
Line 2: 1
Line 3 : n
Line 4 : (n(n-1))/2
Line 5 : n
Line 6 : n
So my question is: Am i supposed to multiply the running times of Line 5 and 6 by the running time of each of the two outer 'for loops'
Thank You
0 Kommentare
Antworten (1)
Akshat
am 6 Nov. 2024
In the code that you have shared, the running times of each of the loops will get multiplied to each other.
We can visualise it something like this:
The loop iterating "k" will run "n" times for every iteration of "j". The loop iterating over "j" will run "i-1" times, as it runs from 2 to "i". Now, as "i" varies, we can see the loop iterating over "i" will run (n-1)*n. "i" itself has n iterations, so all the loops will run n*(n*(n-1)) ~ n^3.
The only thing I would like to point out that the line 2, will have a O(n^2) complexity, as allocation of space to a 2D matrix takes up time.
The overall complexity of the code will still be O(n^3).
Hope this helps.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Fourier Analysis and Filtering finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!