Adding hidden layers to a patternnet hurts accuracy?

4 Ansichten (letzte 30 Tage)
Ekaterina Kryuchkova
Ekaterina Kryuchkova am 3 Apr. 2019
Bearbeitet: Greg Heath am 4 Apr. 2019
I am trying to use patternnet to classify the MNIST handwritten digit dataset.
I expected patternnet(10) to do worse than patternnet([10,10]), but it seems that the accuracy decreases as I add more layers.
Can someone explain why?
Here is my code:
images = loadMNISTImages('train-images.idx3-ubyte'); % initialize figure
labels = loadMNISTLabels('train-labels.idx1-ubyte'); % initialize figure
labels = labels'; % transpose
labels(labels==0)=10; % dummyvar function doesn´t take zeroes
labels=dummyvar(labels)';
net = patternnet([10,10]); %or patternnet(10)
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;
net.performFcn = 'crossentropy';
net = configure(net,images,labels);
net = train(net,images,labels);
y=net(images);
perf = perform(net,labels,y)
correctcount=0;
for i = 1:60000
[M, I]= max(y(:,i));
if t(I,i)== 1
correctcount=correctcount+1;
end
end
errorrate = 1- (correctcount/60000)

Akzeptierte Antwort

Greg Heath
Greg Heath am 3 Apr. 2019
Bearbeitet: Greg Heath am 4 Apr. 2019
  1. The global minimum is achievable with a single hidden layer.
  2. With more hidden layers you add more local minima; most of which are higher than the global minimum.
Thank you for formally accepting my answer
Greg

Weitere Antworten (0)

Produkte


Version

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by