Overfitting or what is the problem
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I am training my NN getting good results (I think) se attached pictures, but if I test my NN for new datas results are very poor. Here is my code
x = inMatix; %19x105100 two year dataset
t = targetData; %1x105100 hist el.load
trainFcn = 'trainlm'; % Levenberg-Marquardt backpropagation.
net=feedforwardnet(20,trainFcn);
%net = fitnet(hiddenLayerSize,trainFcn);
% Setup Division of Data for Training, Validation, Testing
% For a list of all data division functions type: help nndivision
net.divideFcn = 'dividerand'; % Divide data randomly
net.divideMode = 'sample'; % Divide up every sample
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;
net.trainParam.epochs = 1000;
net.trainParam.lr = 0.001;
net.performFcn = 'mse'; % Mean Squared Error
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ...
'plotregression', 'plotfit'};
% Train the Network
[net,tr] = train(net,x,t);
% Test the Network
y = net(x);
e = gsubtract(t,y);
performance = perform(net,t,y)
% Recalculate Training, Validation and Test Performance
trainTargets = t .* tr.trainMask{1};
valTargets = t .* tr.valMask{1};
testTargets = t .* tr.testMask{1};
trainPerformance = perform(net,trainTargets,y)
valPerformance = perform(net,valTargets,y)
testPerformance = perform(net,testTargets,y)
10 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!