Adding constraints to lsq fitting
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have a code that is of a function g(X,Y). The below code fits my data very well. However, I want to add some constraints at the boundaries where my data is not. For instance, how can I set the coefficient such that when Y=0, then the value of my function is 1?
Can anyone help with this?
clear
clc
close all
num=xlsread('C:data.xlsx',1,'A2:F18110');
eta = num(:,3);
r = num(:,4);
g = num(:,6);
%Do the surface fit
options=optimoptions(@lsqcurvefit,'SpecifyObjectiveGradient',false,'MaxFunctionEvaluations',50000,'MaxIterations',1000);
xdata={r,eta};
params0=linspace(0.1, 0.1, 50);
[params, resnorm]=lsqcurvefit(@modelfun,params0,xdata,g,[],[],options)
for i=1:50
C(i)=params(i);
end
xmin = 1; xmax = 2; dx = 0.01;
etamin=0; etamax=0.55; deta=0.01;
[Xgrid,etagrid]=ndgrid(xmin:dx:xmax,etamin:deta:etamax);
surf(Xgrid,etagrid,modelfun(params,{Xgrid,etagrid}))
zlim([0 8]);
hold on;
scatter3(r(:),eta(:),g(:),'MarkerEdgeColor','none',...
'MarkerFaceColor','b','MarkerFaceAlpha',.5); hold off
xlabel 'x', ylabel '\eta', zlabel 'g(x,\eta)'
function [out,Jacobian]=modelfun(params,xdata)
X=xdata{1};
Y=xdata{2};
for i=1:50
C(i)=params(i);
end
A1 = -0.4194;
A2 = 0.5812;
A3 = 0.6439;
A4 = 0.4730;
eta_c = 0.6452;
PV = 1 + 3*Y./(eta_c-Y)+ A1*(Y./eta_c) + 2*A2*(Y./eta_c).^2 + 3*A3*(Y./eta_c).^3 + 4*A4*(Y./eta_c).^4;
rdf_contact = (PV - 1)./(4*Y);
poly_guess = polyVal2D(C,X-1,Y/eta_c,4,4);
out = (poly_guess.*rdf_contact);
if nargout>1
%Jacobian=[X(:), Y(:), ones(size(X(:)))];
end
end
0 Kommentare
Antworten (3)
Adam Danz
am 20 Mär. 2019
"...I want to add some constraints at the boundaries... "
In your call to lsqcurvefit(), you're not using the upper and lower bounds options (5th and 6th inputs are empty). I'd start out by imposing boundaries.
"For instance, how can I set the coefficient such that when Y=0, then the value of my function is 1"
I don't follow this part. The variable "Y" doesn't exist in your sample code. Also, what do you mean "the value of my function"? Do you mean the output of your nonlinear function or do you mean the coefficient estimates produced by the fit?
13 Kommentare
Adam Danz
am 20 Mär. 2019
% Polynomial coefficients are in the following order.
%
% F(X,Y) = P_1 * X^N * Y^M + P_2 * X^{N-1} * Y^M + ... + P_{N+1} * Y^M + ...
% P_{N+2} * X^N * Y^{M-1} + P_{N+3} * X^{N-1} * Y^{M-1} + ... + P_{2*(N+1)} * Y^{M-1} + ...
% ...
% P_{M*(N+1)+1} * X^N + P_{M*(N+1)+2} * X^{N-1} + ... + P_{(N+1)*(M+1)}
Matt J
am 21 Mär. 2019
Bearbeitet: Matt J
am 21 Mär. 2019
Here is an adaptation of the algebraic solution that I presented in your previous thread. I don't bother with the lsqcurvefit alternative, since as I showed you, it is both slower and less accurate. Below are also surface plots of the fitted surface, both in the neighborhood of the data points and near eta=0 where you can see that everything converges to the target value parameter, g0, as eta-->0. In this example, I have set g0=1.3.
clear
clc
close all
%% Data Set-up
num=xlsread('example.xlsx',1,'A2:F18110');
Np=4; %polynomial order
g0=1.3; %target value at eta=0
g = num(:,6);
r = num(:,4);
eta = num(:,3);
otherStuff.r = r;
otherStuff.eta = eta;
otherStuff.g = g;
otherStuff.eta_c = 0.6452;
otherStuff.Np=Np;
otherStuff.A1 = -0.4194;
otherStuff.A2 = 0.5812;
otherStuff.A3 = 0.6439;
otherStuff.A4 = 0.4730;
%% Fit using matrix algebra
A0=func2mat(@(p) modelfun(p,otherStuff), ones(Np+1,Np+1));
q=4*g0./((3+otherStuff.A1)/otherStuff.eta_c); %weight on limiting target value as eta-->0
b=g(:)-q*A0(:,1);
A=A0;
A(:,1:Np+1)=[];
coeffs =[zeros(Np+1,1); A\b]; %fitted coefficients
coeffs(1)=q;
figure(1); showFit(coeffs,otherStuff);
%% Also check surface near eta=0
[Rg,Eg]=ndgrid(unique(r),linspace(1e-8,0.01,100));
differentStuff=otherStuff;
differentStuff.r = Rg(:);
differentStuff.eta = Eg(:);
differentStuff.g=nan([numel(Rg),1]);
figure(2); showFit(coeffs,differentStuff);
function ghat=modelfun(C,otherStuff)
r = otherStuff.r;
eta = otherStuff.eta;
eta_c = otherStuff.eta_c;
Np = otherStuff.Np;
A1 = otherStuff.A1;
A2 = otherStuff.A2;
A3 = otherStuff.A3;
A4 = otherStuff.A4;
PV = 1 + 3*eta./(eta_c-eta)+ A1*(eta./eta_c) + 2*A2*(eta./eta_c).^2 +...
3*A3*(eta./eta_c).^3 + 4*A4*(eta./eta_c).^4;
rdf_contact = (PV - 1)./(4*eta);
Cflip=rot90(reshape(C,Np+1,Np+1),2);
poly_guess = polyVal2D(Cflip,r-1,eta/eta_c,Np,Np);
ghat = (poly_guess.*rdf_contact);
end
function showFit(coeffs,otherStuff)
r = otherStuff.r(:);
eta = otherStuff.eta(:);
g = otherStuff.g(:);
ghat=modelfun(coeffs,otherStuff);
tri = delaunay(r,eta);
%% Plot it with TRISURF
h=trisurf(tri, r, eta, ghat);
h.EdgeColor='b';
h.FaceColor='b';
axis vis3d
hold on;
scatter3(r,eta,g,'MarkerEdgeColor','none',...
'MarkerFaceColor','r','MarkerFaceAlpha',.05);
xlabel 'r', ylabel '\eta', zlabel 'g(r,\eta)'
hold off
end
7 Kommentare
Matt J
am 21 Mär. 2019
Can you remove the weighting function, and then I can just set my coeffs to what they need to be?
It's your model. I assume rdf_contact has a reason to be there. As you'll recall, that was the whole reason you couldn't simply do this with straight up polynomial fitting with the Curve Fitting Toolbox.
Do I add like r = [1 2] and eta=[0 1]?
You add whatever additional points you want included in the surface plot.
I have no idea where this came from:
By setting C(1,1) to some constant q, as you've been proposing, and C(2:Np+1,1)=0 and letting eta-->0 you will find that the surface approaches the limiting value
LimitingValue=(3+otherStuff.A1)/otherStuff.eta_c/4 * q;
Therefore, setting
q=4.*g0./((3+otherStuff.A1)/otherStuff.eta_c));
leads to
LimitingValue = g0
Matt J
am 21 Mär. 2019
Any chance you could modify the code without the weighting function and with the new data? Note that this means rdf_contact and all the coeffs (A1, A2, ..) with it can be removed.
It's virtually trivial now, with the Curve Fitting Toolbox:
%% Load Data
num=xlsread('example2.xlsx',1,'A2:F18110');
eta_c= 0.6452;
r = num(:,4);
eta = num(:,3);
H = num(:,5);
%% Set-up for fit
[I,J]=ndgrid(0:4);
Terms= compose('C%u%u*r^%u*eta^%u', I(:),J(:),I(:),J(:)) ;
Terms=strjoin(Terms,' + ');
independent={'r','eta'};
dependent='H';
knownCoeffs= {'C00','C10','C20','C30','C40', 'C01','C11','C21','C31','C41'};
knownVals=num2cell([ [1 , 0 , 0 , 0 , 0 ], [ 8 , -6 , 0 , 0.5 , 0 ]/eta_c ]);
allCoeffs=compose('C%u%u',I(:),J(:));
[unknownCoeffs,include]=setdiff(allCoeffs,knownCoeffs);
ft=fittype(Terms,'independent',independent, 'dependent', dependent,...
'coefficients', unknownCoeffs,'problem', knownCoeffs);
%% Fit and display
fobj = fit([r,eta],H,ft,'problem',knownVals) ;
hp=plot(fobj,[r,eta],H);
set(hp(1),'FaceAlpha',0.5);
set(hp(2),'MarkerFaceColor','r');
xlabel 'r',
ylabel '\eta'
zlabel 'H(r,\eta)'
4 Kommentare
Siehe auch
Kategorien
Mehr zu Get Started with Curve Fitting Toolbox finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!