what is the significance of 3.3121686421112381E-170 ?
    8 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
    Adam Wozniak
 am 19 Mär. 2019
  
    
    
    
    
    Bearbeitet: Mike Hosea
    
 am 20 Mär. 2019
            using matlab coder, the following is produced.  real_T is a double precision floating point.
What is the significance of 3.3121686421112381E-170 ?  Why was this specific number chosen, and not some other number?
/* Function for MATLAB Function: '<S1>/MATLAB Function' */
static real_T MyThing_norm(const real_T x[3])
{
  real_T y;
  real_T scale;
  real_T absxk;
  real_T t;
  scale = 3.3121686421112381E-170;
  absxk = fabs(x[0]);
  if (absxk > 3.3121686421112381E-170) {
    y = 1.0;
    scale = absxk;
  } else {
    t = absxk / 3.3121686421112381E-170;
    y = t * t;
  }
  absxk = fabs(x[1]);
  if (absxk > scale) {
    t = scale / absxk;
    y = y * t * t + 1.0;
    scale = absxk;
  } else {
    t = absxk / scale;
    y += t * t;
  }
  absxk = fabs(x[2]);
  if (absxk > scale) {
    t = scale / absxk;
    y = y * t * t + 1.0;
    scale = absxk;
  } else {
    t = absxk / scale;
    y += t * t;
  }
  return scale * sqrt(y);
}
3 Kommentare
  Walter Roberson
      
      
 am 19 Mär. 2019
				It looks like it is doing some kind of internal rescaling to prevent underflow. It just isn't obvious to me why 1E-170 is the boundary point, rather than sqrt(realmin) .
Akzeptierte Antwort
  Mike Hosea
    
 am 20 Mär. 2019
        
      Bearbeitet: Mike Hosea
    
 am 20 Mär. 2019
  
      Walter is on the right track.
What we see above is essentually a loop-unrolled version of the reference BLAS algorithm of DNRM2.  The algorithm, having much longer vectors in mind, was designed to avoid unnecessary overflow and underflow while still making just one pass through the data.  Unfortunately, the reference BLAS implementation asks whether abs(x(k)) ~= 0 in the loop.  Floating point equality/inequality comparisons are not welcome when the generated code must adhere, say, to the MISRA standard, and calls to NORM are quite common, so we considered how to modify the algorithm without the ~= 0 comparisons.  
The number in question is the largest initial value of the scale variable that guarantees that (abs(x(k))/scale)^2 does not underflow and is not denormal for any value of abs(x(k)) > 0, i.e. (abs(x(k))/scale)^2 >= realmin.  Hence, the initial value of scale is eps*sqrt(realmin).
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
				Mehr zu Creating and Concatenating Matrices finden Sie in Help Center und File Exchange
			
	Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!