Finite Elements Method creating global stiffness matrix
23 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
ömer altay
am 15 Mär. 2019
Kommentiert: Yago Trias Vila
am 19 Sep. 2022
Hi everyone, I am really stuck in creating a code that creates global stiffness matrix that changing local stiffness matrixes value in every cycle.
For example it has to be
k1 -k1 0 0
-k1 k1+k2 - k2 0
0 - k2 k2+k3 -k3
0 0 -k3 k3
but my code doesn't change k1 to k2 for next step ... it only calculates for k1.
k1 -k1 0 0
-k1 k1+k1 - k1 0
0 - k1 k1+k1 -k1
0 0 -k1 k1
Please help me to solve this problem. Thanks.
clear
tp=[1 2]
for i=2:4
tp(i,:)=tp(i-1,:)+1
end
tpmax=max(max(tp));
KG=zeros(tpmax,tpmax);
for i=1:4
d(i)=32+(28/1200)*(2*i-1)*50
G(i)=(77000*pi*d(i).^4)/3200
k=[G(i) -G(i);-G(i) G(i)]
end
for n=1:4
i=n+[0 1]
j=i
KG(i,j)=KG(i,j)+k
end
2 Kommentare
Mehmet Ali kurt
am 27 Apr. 2020
Hi Omer ; If you have solition of 'Derived stiffness matrix for 1D 3-Nodes elements' can you send me please ?
Akzeptierte Antwort
Stephan
am 15 Mär. 2019
Bearbeitet: Stephan
am 15 Mär. 2019
Hi,
you overwrite k every time. Im sure it could be done much easier - but here s a quick solution without any code optimization (Matlab users usually try to avoid for loops...):
clear
tp=[1 2];
for i=2:4
tp(i,:)=tp(i-1,:)+1;
end
tpmax=max(max(tp));
KG=zeros(tpmax,tpmax);
for i=1:4
d(i)=32+(28/1200)*(2*i-1)*50;
G(i)=(77000*pi*d(i).^4)/3200;
k(:,:,i)=[G(i) -G(i);-G(i) G(i)];
end
for n=1:4
i=n+[0 1];
j=i;
KG(i,j)=KG(i,j)+k(:,:,n);
end
Result is:
KG =
1.0e+08 *
0.9147 -0.9147 0 0 0
-0.9147 2.1154 -1.2006 0 0
0 -1.2006 2.7494 -1.5488 0
0 0 -1.5488 3.5165 -1.9677
0 0 0 -1.9677 1.9677
I think this is what you expected.
Best regards
Stephan
3 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Loops and Conditional Statements finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!