nanmean different outcomes?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
JamJan
am 15 Mär. 2019
Kommentiert: JamJan
am 15 Mär. 2019
Hi,
I'm doing some analysis on data that has the following time intervals, however when I calculate the mean on two different ways (just for sanity) I ran into the following problem.
I have two arrays:
A = [NaN 1,57031250000000 1,60156250000000 1,71093750000000 1,65234375000000 1,51367187500000 1,49804687500000 1,49414062500000 1,59179687500000 1,41015625000000];
nanmean(A) = 1.5603
B = [NaN 1,64648437500000 0,796875000000000 0,667968750000000 1,65820312500000 1,69140625000000 1,39062500000000 1,66015625000000 1,40039062500000 1,57226562500000 1,65429687500000];
nanmean(B) = 1.4139
Now I have put them behind each other in a [A B] way.
C = [A B];
nanmean(C) = 1.4832
However this mean is not the same as the mean of A and B done separately.
(1.5603 + 1.4139)/2 = 1.4871
How is this possible and why is it different? Is this because of the NaNs?
0 Kommentare
Akzeptierte Antwort
Alex Mcaulley
am 15 Mär. 2019
Your two arrays don't have the same number of non nan elements (10 vs 11), then the mean is
(1.5603*sum(~isnan(A)) + 1.4139*sum(~isnan(B)))/(sum(~isnan(A))+sum(~isnan(B))) = 1.4832
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu NaNs finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!