converting state vector to classical orbital elements in orbital mechanics/ evaluating 10x7 matrix and output

3 Ansichten (letzte 30 Tage)
Hi,
I have some errors regarding a piece of code from a larger piece of file. There is a function file that converts a set of 10x6 elements in a state vector M=[x y z ydot ydot zdot] each having 10 values to classical orbital elements that is coe=[a,e,i,raan,w,theta,h] . The problem I am facing right now is overwriting the results and so I end up getting wrong values for the set of classical orbital elements of the corresponding state vector. Here is what I have. Any help is appreciated. Thank you.
function [a,e,inclination,RA,w,trueanomaly,h]=coe_from_cartesianfinal(r,v)
mu_of_moon=4904.8695;
number=length(r);
vradial=zeros(number,3);
h=zeros(number,1);
H=zeros(number,3);
RA=zeros(number,1);
inclination=zeros(number,1);
w=zeros(number,1);
trueanomaly=zeros(number,1);
a=zeros(number,1);
N=zeros(number,3);
n=zeros(number,1);
E=zeros(number,3);
e=zeros(number,1);
rmagnitude=zeros(number,1);
vmagnitude=zeros(number,1);
K=repmat([0 0 1],number,1);
for k=1:number
rmagnitude(k)=norm(r(k)); %in km
vmagnitude(k)=norm(v(k)); % in km/s
vradial(k)=dot(r(k),v(k))/rmagnitude(k);
end
for k=1:number
H=cross(r,v); %%angular momentum vector
h(k)=norm(H);
inclination(k)=acos(H(k,3)/h(k));
N=cross(K,H);
n(k)=norm(N);
cp=cross(N,r);
if n(k)~=0
RA(k)=acos(N(k,1)/n(k));
if N(k,2)<0
RA(k)=2*pi-RA(k);
end
else
RA=0;
end
E=(1/mu_of_moon)*(((vmagnitude(k).^2-mu_of_moon/rmagnitude(k)).*r)-(rmagnitude(k)*vradial(k)*v(k)));
e(k)=sqrt(dot(E(k),E(k)));
eps=1.e-10;
if n(k)~=0
if e(k)>eps
w(k)=acos(dot(N(k),E(k))/(n(k)*e(k)));
if E(k,3)>=0
w(k)=0+w(k);
else
w(k)=2*pi-w(k);
end
else
w(k)=0;
end
else
w(k)=0;
end
if e(k)>eps
trueanomaly(k)=acos(dot(E(k),r(k))/(e(k)*rmagnitude(k)));
if vradial(k)<0
trueanomaly(k)=2*pi - trueanomaly(k);
end
else
if cp(k,3)>=0
trueanomaly(k)=acos(dot(N(k),r(k))/(n(k)*rmagnitude(k)));
else
trueanomaly(k)=2*pi- acos(dot(N(k),r(k))/(n(k)*rmagnitude(k)));
end
end
%%for hyperbola
a(k)=(h(k).^2/mu_of_moon)*(1/(1-e(k).^2));
end
return
%%main script
%%x and y precalculated
R=[x y z];
V=[xdot ydot zdot];
R =
1.0e+03 *
-1.539543931038617 -1.071744082094234 -0.126366771509053
-1.330687701629566 -1.342081271655471 -0.415930037786897
-1.388204041889298 -1.338783059251117 0.064643782753795
-1.746536513511584 -0.696456811628313 -0.345306735225741
-1.035542939142647 -1.546765050831709 -0.137246669037133
-0.876727514529091 -1.717106335359355 -0.181664490600635
-0.786828482429288 -1.696549340718617 -0.322180648909427
-1.353803403176800 -1.358459700082971 0.220334514950041
-0.624050627308063 -1.768814312117858 -0.433907846555942
-1.078978929041128 -1.491445175045869 0.065068333728124
V =
-0.834262318050923 1.264469899064419 -0.560310608663483
-1.155428432334938 1.031548890177763 0.368071417806823
-0.765554902854875 0.847528122161641 1.112402132026975
0.647354488449319 -1.381539397296574 -0.487814775382694
1.289469931929601 -0.814550810565715 -0.549250177549768
0.734875876906693 -0.227824624723748 -1.393155006501252
1.462969211723908 -0.653493221799611 -0.131672557730817
1.134138427903162 -1.085461076386547 0.276149812946353
1.504643018131369 -0.468793144378925 -0.252969373590829
-1.322452638720385 0.955760603071847 -0.022038245050036
[a,e,inclination,RA,w,trueanomaly,h]=coe_from_cartesianfinal(R,V);

Antworten (0)

Kategorien

Mehr zu Reference Applications finden Sie in Help Center und File Exchange

Produkte


Version

R2018a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by