BVP PROBLEM how can we take 'c' in x-axis(continuous range.[-1.3:0.02:-1.1]) and to find f"(0)

1 Ansicht (letzte 30 Tage)
function main
S = 1; c = -1.25; Pr = 0.7; n = -0.8;
x = [3 -1];
x1 = fsolve(@solver, x);
function F = solver(x)
[t, u] = ode45(@equation,[0,5], [S, c, x(1), 1, x(2)]);
F = [u(end, 2)-1 u(end, 4)];
figure(1)
plot(t, u(:,2));
hold on
end
function dy = equation(t, y)
dy = zeros(5,1);
dy(1) = y(2);
dy(2) = y(3);
dy(3) = y(2)^2 - y(1) * y(3) - 1;
dy(4) = y(5);
dy(5) = Pr * (n * y(2) * y(4) - y(1) * y(5));
end
end

Akzeptierte Antwort

Torsten
Torsten am 4 Mär. 2019
function main
S = 1; c = [-1.3:0.02:-1.1]; Pr = 0.7; n = -0.8;
sol = zeros(numel(c),1);
x = [3 -1];
for i = 1:numel(c)
c_actual = c(i);
x1 = fsolve(@solver, x);
sol(i) = x1(1);
x = x1;
end
plot(c,sol)
function F = solver(x)
[t, u] = ode45(@equation,[0,5], [S, c_actual, x(1), 1, x(2)]);
F = [u(end, 2)-1 , u(end, 4)];
end
function dy = equation(t, y)
dy = zeros(5,1);
dy(1) = y(2);
dy(2) = y(3);
dy(3) = y(2)^2 - y(1) * y(3) - 1;
dy(4) = y(5);
dy(5) = Pr * (n * y(2) * y(4) - y(1) * y(5));
end
end
  15 Kommentare
MINATI
MINATI am 6 Mär. 2019
Bearbeitet: MINATI am 7 Mär. 2019
I am working on this attached paper. For reference you can follow:
Want to solve Eq.(11)(12) with B.Cs (13)(14)
In Fig. (2-5), in X-axis c/a is taken.
In other figs., dual solution concept is used i.e if we change x = [3 -1]; as anything like x = [5 -2]; or any other, we will get SECOND solution.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Spline Postprocessing finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by