Validation Accuracy on Neural network
30 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello..I wonder if any of you who have used deep learning on matlab can help me to troubleshoot my problem. I don't understand why I got a sudden drop of my validation accuracy at the end of the graph? It's a simple network with one convolution layer to classify cases with low or high risk of having breast cancer. After the final iteration it displays a validation accuracy of above 80% but then suddenly it dropped to 73% without an iteration. I don't understand that.
Here's my code
%set training dataset folder
digitDatasetPath = fullfile('C:\Users\UOS\Documents\Desiree Data\Run
2\dataBreast\training2');
%training set
imdsTrain = imageDatastore(digitDatasetPath, ...
'IncludeSubfolders',true,'LabelSource','foldernames');
%set validation dataset folder
validationPath = fullfile('C:\Users\UOS\Documents\Desiree Data\Run
2\dataBreast\validation2');
%testing set
imdsValidation = imageDatastore(validationPath, ...
'IncludeSubfolders',true,'LabelSource','foldernames');
%create a clipped ReLu layer
layer = clippedReluLayer(10,'Name','clip1');
% define network architecture
layers = [
imageInputLayer([256 256 1]);
% conv_1
convolution2dLayer(3,32,'Stride',1)
batchNormalizationLayer
clippedReluLayer(10);
maxPooling2dLayer(2,'Stride',2)
%fc
fullyConnectedLayer(100)
dropoutLayer(0.7,'Name','drop1');
%fc
fullyConnectedLayer(25)
dropoutLayer(0.8,'Name','drop2');
% fc layer
fullyConnectedLayer(2)
softmaxLayer
classificationLayer];
% specify training option
options = trainingOptions('adam', ...
'InitialLearnRate',0.001, ...
'MaxEpochs',15, ...
'Shuffle','every-epoch', ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
% train network using training data
net = trainNetwork(imdsTrain,layers,options);
% classify validation images and compute accuracy
YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;
%calculate accuracy
accuracy = sum(YPred == YValidation)/numel(YValidation);
8 Kommentare
Antworten (4)
Andrik Rampun
am 19 Feb. 2019
18 Kommentare
Don Mathis
am 26 Feb. 2019
Yes, MiniBatchSize. And I meant the outputSize of your fullyConnectedLayers could be reduced to something smaller than 3136:
fullyConnectedLayer(3136)
Saira
am 15 Jun. 2020
Hi,
I have 5600 training images. I have extracted features using Principal Component Analysis (PCA). Then I am applying CNN on extracted features. My training accuracy is 30%. How to increase training accuracy?
Feature column vector size: 640*1
My training code:
% Convolutional neural network architecture
layers = [
imageInputLayer([1 640 1]);
reluLayer
fullyConnectedLayer(7);
softmaxLayer();
classificationLayer()];
options = trainingOptions('sgdm', 'Momentum',0.95, 'InitialLearnRate',0.0001, 'L2Regularization', 1e-4, 'MaxEpochs',5000, 'MiniBatchSize',8192, 'Verbose', true);
0 Kommentare
Sevda Kemba
am 6 Jun. 2022
@Andrik Rampun Hello. In Matlab, we load the data set with code and limit it in deep learning. But when we train, validation accuracy stays between 40-50%. What can we do to increase it to 90%? We would be very happy if you could help.
0 Kommentare
Sevda Kemba
am 6 Jun. 2022
@Saira Hello. In Matlab, we load the data set with code and limit it in deep learning. But when we train, validation accuracy stays between 40-50%. What can we do to increase it to 90%? We would be very happy if you could help.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!