Validation Accuracy on Neural network

30 Ansichten (letzte 30 Tage)
Andrik Rampun
Andrik Rampun am 18 Feb. 2019
Beantwortet: Sevda Kemba am 6 Jun. 2022
Hello..I wonder if any of you who have used deep learning on matlab can help me to troubleshoot my problem. I don't understand why I got a sudden drop of my validation accuracy at the end of the graph? It's a simple network with one convolution layer to classify cases with low or high risk of having breast cancer. After the final iteration it displays a validation accuracy of above 80% but then suddenly it dropped to 73% without an iteration. I don't understand that.
matlab_per2.png
Here's my code
%set training dataset folder
digitDatasetPath = fullfile('C:\Users\UOS\Documents\Desiree Data\Run
2\dataBreast\training2');
%training set
imdsTrain = imageDatastore(digitDatasetPath, ...
'IncludeSubfolders',true,'LabelSource','foldernames');
%set validation dataset folder
validationPath = fullfile('C:\Users\UOS\Documents\Desiree Data\Run
2\dataBreast\validation2');
%testing set
imdsValidation = imageDatastore(validationPath, ...
'IncludeSubfolders',true,'LabelSource','foldernames');
%create a clipped ReLu layer
layer = clippedReluLayer(10,'Name','clip1');
% define network architecture
layers = [
imageInputLayer([256 256 1]);
% conv_1
convolution2dLayer(3,32,'Stride',1)
batchNormalizationLayer
clippedReluLayer(10);
maxPooling2dLayer(2,'Stride',2)
%fc
fullyConnectedLayer(100)
dropoutLayer(0.7,'Name','drop1');
%fc
fullyConnectedLayer(25)
dropoutLayer(0.8,'Name','drop2');
% fc layer
fullyConnectedLayer(2)
softmaxLayer
classificationLayer];
% specify training option
options = trainingOptions('adam', ...
'InitialLearnRate',0.001, ...
'MaxEpochs',15, ...
'Shuffle','every-epoch', ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
% train network using training data
net = trainNetwork(imdsTrain,layers,options);
% classify validation images and compute accuracy
YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;
%calculate accuracy
accuracy = sum(YPred == YValidation)/numel(YValidation);
  8 Kommentare
Sridharan K
Sridharan K am 10 Mär. 2021
i got 100% accuracy. thanks for this program.
Santhosh Surya Kiran
Santhosh Surya Kiran am 1 Jul. 2021
What u got is wrong..

Melden Sie sich an, um zu kommentieren.

Antworten (4)

Andrik Rampun
Andrik Rampun am 19 Feb. 2019
Some updates. I got similar results (sudden drop) at the end of the graph. I find this really strange.
% set training dataset folder
digitDatasetPath = fullfile('C:\Users\UOS\Documents\Desiree Data\Run 2\dataBreast\training2');
imdsTrain = imageDatastore(digitDatasetPath, ...
'IncludeSubfolders',true,'LabelSource','foldernames');
% set validation dataset folder
validationPath = fullfile('C:\Users\UOS\Documents\Desiree Data\Run 2\dataBreast\validation2');
imdsValidation = imageDatastore(validationPath, ...
'IncludeSubfolders',true,'LabelSource','foldernames');
% create a clipped ReLu layer
layer = clippedReluLayer(10,'Name','clip1');
% define network architecture
layers = [
imageInputLayer([256 256 1], 'Normalization', 'none')
% conv_1
convolution2dLayer(3,16,'Stride',1)
batchNormalizationLayer
clippedReluLayer(10);
maxPooling2dLayer(2,'Stride',2)
% conv_2
convolution2dLayer(3,16,'Stride',1)
batchNormalizationLayer
clippedReluLayer(10);
maxPooling2dLayer(2,'Stride',2)
% conv_3
convolution2dLayer(3,32,'Stride',1)
batchNormalizationLayer
clippedReluLayer(10);
maxPooling2dLayer(2,'Stride',2)
% conv_4
convolution2dLayer(3,64,'Stride',1)
batchNormalizationLayer
clippedReluLayer(10);
maxPooling2dLayer(2,'Stride',2)
% conv_5
convolution2dLayer(3,128,'Stride',1)
batchNormalizationLayer
clippedReluLayer(10);
maxPooling2dLayer(2,'Stride',2)
% conv_6
convolution2dLayer(3,256,'Stride',1)
batchNormalizationLayer
clippedReluLayer(10);
maxPooling2dLayer(2,'Stride',2)
% fc5
fullyConnectedLayer(500)
dropoutLayer(0.5,'Name','drop1');
% fc5
fullyConnectedLayer(250)
dropoutLayer(0.5,'Name','drop2');
% fc5
fullyConnectedLayer(50)
dropoutLayer(0.5,'Name','drop3');
% fc layer
fullyConnectedLayer(2)
softmaxLayer
classificationLayer];
% soecify training option
options = trainingOptions('adam', ...
'InitialLearnRate',0.001, ...
'MaxEpochs',30, ...
'Shuffle','every-epoch', ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
% train network using training data
net = trainNetwork(imdsTrain,layers,options);
% classify validation images and compute accuracy
YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;
accuracy = sum(YPred == YValidation)/numel(YValidation)
%YPred = predict(net,X);
analyzeNetwork(net)
matlab_per3.png
  18 Kommentare
Andrik Rampun
Andrik Rampun am 26 Feb. 2019
Hi Don,
When you said shirink batchsize do you mean my MinibatchSize?
Another question is I can even reduce my hidden units in my FC layer?
Thanks
Don Mathis
Don Mathis am 26 Feb. 2019
Yes, MiniBatchSize. And I meant the outputSize of your fullyConnectedLayers could be reduced to something smaller than 3136:
fullyConnectedLayer(3136)

Melden Sie sich an, um zu kommentieren.


Saira
Saira am 15 Jun. 2020
Hi,
I have 5600 training images. I have extracted features using Principal Component Analysis (PCA). Then I am applying CNN on extracted features. My training accuracy is 30%. How to increase training accuracy?
Feature column vector size: 640*1
My training code:
% Convolutional neural network architecture
layers = [
imageInputLayer([1 640 1]);
reluLayer
fullyConnectedLayer(7);
softmaxLayer();
classificationLayer()];
options = trainingOptions('sgdm', 'Momentum',0.95, 'InitialLearnRate',0.0001, 'L2Regularization', 1e-4, 'MaxEpochs',5000, 'MiniBatchSize',8192, 'Verbose', true);

Sevda Kemba
Sevda Kemba am 6 Jun. 2022
@Andrik Rampun Hello. In Matlab, we load the data set with code and limit it in deep learning. But when we train, validation accuracy stays between 40-50%. What can we do to increase it to 90%? We would be very happy if you could help.

Sevda Kemba
Sevda Kemba am 6 Jun. 2022
@Saira Hello. In Matlab, we load the data set with code and limit it in deep learning. But when we train, validation accuracy stays between 40-50%. What can we do to increase it to 90%? We would be very happy if you could help.

Kategorien

Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by