# fitcsvm decision boundary equation

34 Ansichten (letzte 30 Tage)
Shaybe am 17 Feb. 2019
Bearbeitet: Brendan Hamm am 11 Mär. 2019
I have trained a linear SVM on 2D data and can't seem to get the line equation describing the decision boundary.
Here is some code that fails miserably.
rng(1)
n=5;
X=rand(n,2);
Y=logical([1 0 0 0 0]);
svmStruct=fitcsvm(X,Y);
gscatter(X(:,1),X(:,2),Y); hold on;
fplot(@(x)-(svmStruct.Beta(1)*x+svmStruct.Bias)/svmStruct.Beta(2))
Would appreciate help!
##### 1 Kommentar-1 ältere Kommentare anzeigen-1 ältere Kommentare ausblenden
Brendan Hamm am 11 Mär. 2019
It seems to me the reason why this fails is you are trying to train a model with only 5 points. Stop and think, how do you make a support vector with only one data point for the True class? An infinite number of ways should be your answer.
One other issue you seem to have is in the orientation of your data. X is a 5-by-2 and Y is 1-by-5. So, you should transpose your response. No that this solves the above problem.
Y=logical([1 0 0 0 0])';
Otherwise what you have for the plotting seems fine.

Melden Sie sich an, um zu kommentieren.

### Antworten (1)

Brendan Hamm am 11 Mär. 2019
Bearbeitet: Brendan Hamm am 11 Mär. 2019
Generate some data for the classes
rng('default')
n = 100;
X = [2 + 0.5*randn(n,2);...
3 + 0.6*randn(n,2)];
Y = [zeros(n,1);ones(n,1)];
gscatter(X(:,1),X(:,2),Y)
Fit a model
mdl = fitcsvm(X,Y);
Make a plot showing the decision boundary
Begin by making a grid of values
x = linspace(0,5);
y = linspace(0,5);
[XX,YY] = meshgrid(x,y);
Stack the values into an m-by-2 matrix
pred = [XX(:),YY(:)];
p = predict(mdl,pred);
Look at a scatter of the predictions
gscatter(pred(:,1),pred(:,2),p)
Define the boundary function, note that:
f = @(x) -(x*mdl.Beta(1) + mdl.Bias)/mdl.Beta(2);
y = f(x);
hold on
plot(x,y,'g--','LineWidth',2,'DisplayName','Boundary')
hold off
On the original data
gscatter(X(:,1),X(:,2),Y(:,1))
hold on
plot(x,y,'g--','LineWidth',2,'DisplayName','Boundary')
hold off
More generally for ECOC you might consider the code in this example:
##### 0 Kommentare-2 ältere Kommentare anzeigen-2 ältere Kommentare ausblenden

Melden Sie sich an, um zu kommentieren.

### Kategorien

Mehr zu Support Vector Machine Classification finden Sie in Help Center und File Exchange

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by