Evaluating a complex integral

7 Ansichten (letzte 30 Tage)
Michael Devereux
Michael Devereux am 14 Feb. 2019
Beantwortet: Abhishek Hullur am 8 Aug. 2021
Hello I'm trying to integrate the following function in MATLAB
but it's returing the wrong answer when I try something like
This is what I have tried so far:
fun = @(t,x,y) exp(1i.*(t.^4+x.*t.^2+y.*t));
P = @(x,y) integral(@(t)fun(t,x,y),-Inf,Inf);
P(1,1)
Any help appreciated and many thanks in advance
  3 Kommentare
Torsten
Torsten am 15 Feb. 2019
exp(i*(t^4+x*t^2+y*t)) does not tend to 0 as | t| -> Inf. Thus your integral does not exist (at least in the usual sense).
Michael Devereux
Michael Devereux am 15 Feb. 2019
According to WolframAlpha the answer is 1.20759 + 0.601534 i
Keep in mind it's a complex exponential so there is a finite solution. This is know as the Pearcey Integral. I am more concerned that I have entered the formula incorrectly than the actual integral itself. Is this the correct way to approach the problem.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Torsten
Torsten am 15 Feb. 2019
format long
fun = @(t,x,y) exp(-t.^4 + 1i.*y.*t - x.*t.^2 + 1i*pi*0.125);
P = @(x,y) integral(@(t)fun(t,x*exp(-1i*pi*0.25),y*exp(1i*pi*0.125)),-Inf,Inf);
P(1,1)
Reference:
https://arxiv.org/pdf/1601.03615.pdf

Weitere Antworten (1)

Abhishek Hullur
Abhishek Hullur am 8 Aug. 2021
. Evaluate around the rectangle with vertices

Kategorien

Mehr zu Programming finden Sie in Help Center und File Exchange

Tags

Produkte


Version

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by