How to calculate eigenvectors without using eig
14 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have a matrix, I need to get the eigenvectors. I already calculated the eigenvalues, Let's assume we have the eigenvalues, I wrote this
for i = 1:length(c)
syms y
cal_vec = (c-eig_Val(i)*I)*y == 0;
eigVec(:,i) = double(solve(cal_vec,y));
end
now I got zero as y, but I need to get y 1 and y2
0 Kommentare
Antworten (2)
Matt J
am 6 Feb. 2019
Hint: use the null command to find non-zero solutions to the eigenvector equation.
4 Kommentare
Angelo Yeo
am 6 Jul. 2023
Although this question is getting old, here is a sample solution to the question.
A=[2 1; 1, 2]; % A
lambdaA = round(eig(A)); % Finds values of A
% Note that "rational" option is used otherwise SVD is used in the
% calculation.
v1 = null(A - lambdaA(1) * eye(2), "rational");
v2 = null(A - lambdaA(2) * eye(2), "rational");
v1 = v1 ./ norm(v1, 2)
v2 = v2 ./ norm(v2, 2)
3 Kommentare
Steven Lord
am 9 Nov. 2023
A=[2 1; 1, 2]; % A
lambdaA = [1, 3]; % Eigenvalues calculated earlier
% Note that "rational" option is used otherwise SVD is used in the
% calculation.
v1 = null(A - lambdaA(1) * eye(2), "rational");
v2 = null(A - lambdaA(2) * eye(2), "rational");
v1 = v1 ./ norm(v1, 2)
v2 = v2 ./ norm(v2, 2)
Now, to check v1 and v2, let's call eig and compare the result of the code above with the "known" answer.
[V, D] = eig(A)
That looks good to me.
Walter Roberson
am 9 Nov. 2023
The question is about calculation of eigenvectors knowing the eigenvalues
Siehe auch
Kategorien
Mehr zu Linear Algebra finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!