Solving a nonlinear ODE with derivative squared
11 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Travis
am 1 Feb. 2019
Kommentiert: Bill Greene
am 4 Feb. 2019
I'm trying to solve a nonlinear ODE which looks something like this:
. I know I can use the implicit solver ode15i but the problem is also stiff so I'd prefer to use ode15s. Is it possible to solve this type of nonlinear ode using ode15s? Any suggestions would be appreciated, thank you!
2 Kommentare
Torsten
am 4 Feb. 2019
As for all quadratic equations, there are two solutions for y'. Do you know which one you'll have to take ?
Bill Greene
am 4 Feb. 2019
ode15i is based on backward differentiation formulas so I would expect it to be as effective as ode15s for stiff problems. That has also been my experience with the two solvers. Do you have an example stiff ODE where this is not the case?
Akzeptierte Antwort
Star Strider
am 1 Feb. 2019
Bearbeitet: Star Strider
am 3 Feb. 2019
One approach:
syms a b c d y(t) T Y
Dy = diff(y);
DE = a*Dy^2 + b*Dy + c*y == d;
isoDE = isolate(DE,Dy)
[VF,Sbs] = odeToVectorField(isoDE)
odefcn = matlabFunction(VF, 'Vars',{T,Y,a b c d});
odefcn = @(T,Y,a,b,c,d)[((b+sqrt(a.*d.*4.0+b.^2-a.*c.*Y(1).*4.0)).*(-1.0./2.0))./a; ((b-sqrt(a.*d.*4.0+b.^2-a.*c.*Y(1).*4.0)).*(-1.0./2.0))./a]
a = 3;
b = 5;
c = 7;
d = 11;
[T,Y] = ode15s(@(T,Y)odefcn(T,Y,a,b,c,d), [0 5], [0;0]);
figure
plot(T, Y)
grid
It works!
2 Kommentare
Star Strider
am 3 Feb. 2019
As always, my pleasure!
I‘m not sure if it’s possible express systems of PDEs in the Symbolic Math Toolbox.
You most likelly need the Partial Differential Equation Toolbox (link). I haven’t used it recently, so I have no recent experience with it.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!