Curve Fitting using Least Squares
10 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
MATLABhelp
am 25 Jan. 2019
Kommentiert: Star Strider
am 25 Jan. 2019
Given a data table with values of x and y and supposed to approximate relationship between x and y. The first case is a parabola with equation y = a0 + a1*x + a2*(x^2)
and the second case is a saturation growth rate equation with the equation y = a0*(x/(a1+x)). Must find the parameters using normal equations formulation of least squares.
Finished the code for the parabola and it is the following
x = [20 40 60 80 100 120 140 160];
y = [13 22 30 36 40 43 45 46];
A = [ones(size(x))' x' (x.^2)'];
b = inv(A'*A)*(A'*y');
s = b(3)*x.^2+b(2)*x+b(1);
plot(x,s,'k')
hold off
How can you modify code for it to run for saturation growth rate equation?
2 Kommentare
Walter Roberson
am 25 Jan. 2019
Bearbeitet: Walter Roberson
am 25 Jan. 2019
We recommend that you avoid using inv() for numeric stability reasons.
b = (A'*A) \ (A'*y');
but except in case of singular A, that should be the same as
b = A \ y';
Akzeptierte Antwort
Star Strider
am 25 Jan. 2019
Try this:
fcn = @(b,x) b(1).*x./(b(2)+x);
x = [20 40 60 80 100 120 140 160];
y = [13 22 30 36 40 43 45 46];
B0 = [50; 50];
B = fminsearch(@(b) norm(y - fcn(b,x)), B0);
s = fcn(B,x);
figure
plot(x, y, 'pg')
hold on
plot(x,s,'k')
hold off
A = [ones(size(x))' x' (x.^2)'];
b = A\y';
s = A*b;
figure
plot(x,y,'pg')
hold on
plot(x,s,'k')
hold off
The first equation (in my code) is nonlinear in the parameters, in that the derivative with respect to the each parameter is a function of the same parameter or other parameters. A linear approach will not provide optimal estimates of the parameters.
The second (in my code) is linear in the parameters, so a linear approach will provide optimal parameter estimates.
2 Kommentare
Star Strider
am 25 Jan. 2019
As always, my pleasure!
Correcting one small error, ‘... the derivative with respect to the each parameter ...’ should be ‘... the partial derivative with respect to the each parameter ...’
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Linear and Nonlinear Regression finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!