lsqnonlin with jacobian problem

2 Ansichten (letzte 30 Tage)
Mus Bohr
Mus Bohr am 19 Jul. 2012
TE=2:5:5*20;
S(1,:)=104*exp(-TE/10);
options=optimset('Algorithm','levenberg-marquardt','Display','off','Jacobian ','on','Tolfun',1e-6 );
P0=[59 30];
P=lsqnonlin(@test,P0,[],[],options,S,TE)
function [F,J]=test(P,S,TE)
Ft=P(1)*exp(-TE/P(2));
F=S-Ft;
if nargout >1
J(:,1)=exp(-TE/P(2));
J(:,2)=P(1)*TE.*exp(-TE/P(2))/(P(2)^2);
end
  1 Kommentar
Walter Roberson
Walter Roberson am 19 Jul. 2012
Are you encountering an error message? If so, what message and where?

Melden Sie sich an, um zu kommentieren.

Antworten (5)

Walter Roberson
Walter Roberson am 19 Jul. 2012

Mus Bohr
Mus Bohr am 19 Jul. 2012
Thank you for your response.
My example contains only two variables (parameters). The result of the fitting is exact when I turn Jacobian 'off'. Otherwise, the result is completely erroneous.
Best,
MB
  1 Kommentar
Walter Roberson
Walter Roberson am 19 Jul. 2012
Bearbeitet: Walter Roberson am 19 Jul. 2012
P=lsqnonlin(@test,P0,[],[],options,S,TE)
  1. @test
  2. P0
  3. []
  4. []
  5. options
  6. S
  7. TE
That is 7 parameters. lsqnonlin() does not accept anything after "options".

Melden Sie sich an, um zu kommentieren.


Mus Bohr
Mus Bohr am 19 Jul. 2012
Thank you for this precision, but lsqnonlin function accept parameters after "options".
Indeed, I found the solution to my problem. Actually, my scripts is correct, but I should to swap Ft and S (in 'test' function). In other words, F=Ft-S instead of F=S-Ft.
Anyway, thank you so much for you time.
Warm regards,
MB.
  2 Kommentare
Walter Roberson
Walter Roberson am 19 Jul. 2012
parameters after "options" has no defined result, and so is subject to change at any time, without notice. We repeatedly get Questions here from people who have attempted to pass extra parameters in a similar manner only to have the function fail because of it. Is there a point in relying on accidental behavior when a simple and well-documented adjustment is available? http://www.mathworks.com/help/toolbox/optim/ug/brhkghv-7.html
Mus Bohr
Mus Bohr am 19 Jul. 2012
I take note. Again thank you.
Best,
MB

Melden Sie sich an, um zu kommentieren.


Mus Bohr
Mus Bohr am 19 Jul. 2012
or provide Jacobian with the negative sign.

Star Strider
Star Strider am 19 Jul. 2012
Swapping S and Ft so that F = Ft - S will likely solve your problem. In the objective function you gave it, the lsqnonlin function uses the Jacobian of F in its calculation, not the Jacobian of Ft, and while they may look the same, the derivatives of F = S - Ft will be the negative of the ones you posted, while the derivatives of F = Ft - S will have the same signs as those you posted.
This is likely the reason that with the ‘Jacobian’ option ‘off’, your function converged.
  1 Kommentar
Mus Bohr
Mus Bohr am 19 Jul. 2012
Thank you for these precisions.
Best,
MB

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Interpolation finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by