I have an error with training SVM in Matlab. is there anyone can help me?

3 Ansichten (letzte 30 Tage)
clear all
clc
ds=dataset('xlsfile','AD.xlsx');
feat1=ds.beta2L(1:100);
feat=ds.beta2T(1:100);
segmented_features = cell(1,3);
segmented_features =[feat1, feat];
[cA1,cH1,cV1,cD1] = dwt2(segmented_features,'db4');
[cA2,cH2,cV2,cD2] = dwt2(cA1,'db4');
[cA3,cH3,cV3,cD3] = dwt2(cA2,'db4');
DWT_feat = [cA3,cH3,cV3,cD3];
G = pca(DWT_feat);
whos DWT_feat
whos G
load trainset
xdata = meas;
group = label;
%svmStruct = svmtrain(xdata,group,'showplot',false);
% species = svmclassify(svmStruct,feat)
svmStruct1 = svmtrain(xdata,group,'kernel_function', 'linear');
species = svmclassify(svmStruct1,feat,'showplot',false);
classperf(cp,classes,test);
Accuracy_Classification = cp.CorrectRate.*100;
sprintf('Accuracy of Linear kernel is: %g%%',Accuracy_Classification)
**********************
Error using svmtrain (line 236)
Y must be a vector or a character array.
Error in newcodewithoutkmeans (line 22)
svmStruct1 = svmtrain(xdata,group,'kernel_function', 'linear');
  5 Kommentare
Vania krm
Vania krm am 19 Jan. 2019
Yes. Now my problem is solved. Very very thanks of your help. Just can I ask you that I use this code for accuracy based on Matlab codes of site but I have different accuracy in each time of run. How do I mention the final accuracy of system?
% Multiple runs for accuracy highest is 90%
groups = ismember(label,'AD ');
groups = ismember(label,'Nold');
[train,test] = crossvalind('HoldOut',groups);
cp = classperf(groups);
svmStruct = svmtrain(xdata(train,:),groups(train),'showplot',false,'kernel_function','linear');
classes = svmclassify(svmStruct,xdata(test,:),'showplot',false);
classperf(cp,classes,test);
Accuracy_Classification = cp.CorrectRate.*100;
sprintf('Accuracy of Linear kernel is: %g%%',Accuracy_Classification)
Walter Roberson
Walter Roberson am 19 Jan. 2019
svmtrain uses random partitions . You would need to set the random seed to repeat the same results .

Melden Sie sich an, um zu kommentieren.

Antworten (0)

Kategorien

Mehr zu Statistics and Machine Learning Toolbox finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by