Solve system of differential equations with embedded non differential equation
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Brendan Görres
am 5 Jan. 2019
Kommentiert: madhan ravi
am 5 Jan. 2019
I have a system of 5 differential equations that I want to solve. The problem is that 2 of these equations contain a value alpha that depends on the solution of dX(1) and dX(3) as followed:
alpha=atan(X(3)/X(1));
As you can see this is not a differential equation, so my question is: How can I solve this problem, if my system of equations depends on alpha and alpha depends on the solution of these equations.
Alpha isn't implied in the attached code yet, because I don't know where and how.
Thanks for your help.
3 Kommentare
madhan ravi
am 5 Jan. 2019
There is an option to insert equations in latex form in the insert option.
Akzeptierte Antwort
madhan ravi
am 5 Jan. 2019
tSpan=[.01 30];
initial=[.01; .01; .01; .01; 68e3];%initial gues for x(0),ax(0),y(0),ay(0),m(0)and alpha(0)
^^^^^^^^^^^^^^^^^^^^^^^^---- only 5 conditions because you only have 5 equations
[t,x]=ode45(@fun,tSpan,initial);
x1=x(:,1);%first column of the x vector=Position in x direction
x2=x(:,2);%second column of the x vector=Acceleration in x direction
y1=x(:,3);%third column of the x vector=Position in y direction
y2=x(:,4);%fourth column of the x vector=Acceleration in y direction
m=x(:,5);%fifth column of the x vector= Mass
%plot overall position over time
postot=sqrt(x1.^2+y1.^2);%Phythagoras
figure
plot(t,postot)
xlabel('time[s]')
ylabel('vehicle position[m]')
title('vehicle position over time')
%plot overall acceleration overtime
acctot=sqrt(x2.^2+y2.^2);
figure
plot(t,acctot)
xlabel('time[s]')
ylabel('vehicle acceleration[m/s^2]')
title('Vehicle Acceleration over time')
function dX=fun(t,X)
%constants
g0=9.81;%[m/s^2]
Isp=390;%[s]
thrust=933910;%[N]
ceff=Isp*g0;
propflow=thrust/ceff;
%differential equations
alpha=atan(X(3)/X(1)); % have a look here
dX(1)=X(2);
dX(2)=(thrust*cos(alpha))/X(5);
dX(3)=X(4);
dX(4)=(thrust*sin(alpha))/X(5);
dX(5)=-propflow;
%Definition of dX
dX=[dX(1);dX(2);dX(3);dX(4);dX(5)];
end
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!