How to calculate Probability of detection (hit rate) (POD),False alarm ratio (FAR), Accuracy (ACC) between two precipitation products.
    11 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
 i want to calculate POD, FAR, and ACC, between 387 station daily data sets with GSMAP precipitaion with similar dimension data sets, code and data sets are attached; data also contain some NaN values. 
clc
 clear all
 load('pre_product.mat')
 load('pre_gauge.mat')
for m=1:length(pre_gauge);%%(number of staitons) 
    aa=0;
    bb=0;
    cc=0;
    dd=0;
    pre_g_hit=[];
    pre_p_hit=[];
    pre_g_false=[];
    pre_p_false=[];
    pre_g_miss=[];
    pre_p_miss=[];
    for k=1:365;%%(day)
        if (pre_gauge(k)>=0.1)&&(pre_product(k)>=0.1)
            aa=aa+1;
            pre_g_hit=[pre_g_hit;pre_gauge(k)];
            pre_p_hit=[pre_p_hit;pre_product(k)];
        elseif (pre_gauge(k)<0.1)&&(pre_product(k)>=0.1)
            bb=bb+1;
            pre_g_false=[pre_g_false;pre_gauge(k)];
            pre_p_false=[pre_p_false;pre_product(k)];
        elseif (pre_gauge(k)>=0.1)&&(pre_product(k)<0.1)
            cc=cc+1;
            pre_g_miss=[pre_g_miss;pre_gauge(k)];
            pre_p_miss=[pre_p_miss;pre_product(k)];
        elseif (pre_gauge(k)<0.1)&&(pre_product(k)<0.1)
            dd=dd+1;
        end
    end
    r0=corrcoef(pre_product,pre_gauge);
    R(m)=r0(1,2);
    bias(m)=sum(pre_product-pre_gauge)/sum(pre_gauge);
    bias_hit(m)=sum(pre_p_hit-pre_g_hit)/sum(pre_gauge);
    bias_false(m)=sum(pre_p_false-pre_g_false)/sum(pre_gauge);
    bias_miss(m)=sum(pre_p_miss-pre_g_miss)/sum(pre_gauge);
    RMSE(m)=(sum((pre_product-pre_gauge).^2)/length(pre_gauge))^0.5;
    POD(m)=aa/(aa+cc);
    FAR(m)=bb/(aa+bb);
    ACC(m)=(aa+dd)/(aa+bb+cc+dd);
end
3 Kommentare
Antworten (1)
  shankar sharma
 am 18 Aug. 2022
        Recently, i have solved the question,
here are the codes
    pre_gauge=reshape(obs,387,1095); %% making station data timeseries (387 stations and 1095 days (3year))
    pre_product=reshape(gpm,387,1095); %% making satellite data timeseries (387 stations and 1095 days (3year))
    %%loop for each stations (it calculates for each station, a total of 387
    %%staitons)
    for m=1:387;%%(number of staitons)
        aa=0;
        bb=0;
        cc=0;
        dd=0;
        pre_g_hit=[];
        pre_p_hit=[];
        pre_g_false=[];
        pre_p_false=[];
        pre_g_miss=[];
        pre_p_miss=[];
        for k=1:1095;  %%(number of day)
            if (pre_gauge(m,k)>=1)&&(pre_product(m,k)>=1)
                aa=aa+1;
                pre_g_hit=[pre_g_hit;pre_gauge(m,k)];
                pre_p_hit=[pre_p_hit;pre_product(m,k)];
            elseif (pre_gauge(m,k)<1)&&(pre_product(m,k)>=1)
                bb=bb+1;
                pre_g_false=[pre_g_false;pre_gauge(m,k)];
                pre_p_false=[pre_p_false;pre_product(m,k)];
            elseif (pre_gauge(m,k)>=1)&&(pre_product(m,k)<1)
                cc=cc+1;
                pre_g_miss=[pre_g_miss;pre_gauge(m,k)];
                pre_p_miss=[pre_p_miss;pre_product(m,k)];
            elseif (pre_gauge(m,k)<1)&&(pre_product(m,k)<1)
                dd=dd+1;
            end
        end
        %% formula for pod, far, acc
        POD(m)=aa/(aa+cc);
        FAR(m)=bb/(aa+bb);
        ACC(m)=(aa+dd)/(aa+bb+cc+dd);
        CSI(m)=aa/(aa+bb+cc);
        FBI(m)=(bb+aa)/(aa+cc);
    end
    %% average for whole stations
    ALL_POD=AA/(AA+CC)
    ALL_FAR=BB/(AA+BB)
    ALL_ACC=(AA+DD)/(AA+BB+CC+DD)
    ALL_FBI=(AA+BB)/(AA+CC)
    ALL_CSI=AA/(AA+BB+CC)
0 Kommentare
Siehe auch
Kategorien
				Mehr zu Time Series Objects finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


