How to evaluate the performance by ANN
8 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi,
I am working on ANN to recognize the characters. Here is the code. I want to know that how to evaluate the performance of trained network means accuracy of the network.
'trainingset' is the dataset for train the network and 'target' is shows the target vector of the trainingset.
close all; clear all;clc
load target;
%load train_1a;
% load trainingset
load trainingset
net = feedforwardnet([20 20], 'trainlm');
%net.performFcn = 'sse';
net.trainParam.lr=0.01;
net.trainParam.goal = 0.01;
net.trainParam.show = 20;
net.trainParam.epochs = 50;
%net.trainParam.mc = 0.95;
net.trainParam.min_grad =1e-15;
net.trainParam.max_fail =10;
net = train(net,trainingset,target);
Result = sim(net,trainingset) %sim it with dataset 'base'
0 Kommentare
Antworten (1)
Jaimin
am 29 Okt. 2024 um 11:55
Hi @neha gautam
MATLAB includes various tools and functions for assessing the performance of neural networks, such as calculating accuracy. The Deep Learning Toolbox (previously known as the Neural Network Toolbox) provides built-in functions specifically designed for performance evaluation.
A useful tool is the “confusion” function, which calculates the confusion matrix and accuracy for classification tasks.
To learn more about “confusion” function kindly refer following MathWorks Documentation.
I hope this will be helpful.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!