Solving PDE with Euler implicit method

14 Ansichten (letzte 30 Tage)
Irit Amelchenko
Irit Amelchenko am 27 Dez. 2018
I want to solve the Swift Hohenberg equation for homogenous solution, using the Euler method.
This is the function I have for the Euler method:
function [U] = Euler(f,y,dt,tmax)
% func - is a function handle
% dt - the steps
% tmax - the maximal time
% y - the first guess
% parameters:
q = 1;
b = 1.8;
r = 1;
f= @(u) r*u - u.^3 + b*u.^2 - q.^4*u; % Swift Hohenberg equation
y = -1:0.1:1; %initial guess
dt = 0.1;
tmax = 10;
t = 0:dt:tmax;
n = length(t);
U = zeros(length(y),n);
U(:,1) = y;
U_old = y(:);
for i=1:length(t)-1
U_new = U_old+dt.*f(t(i),U_old);
U(:,i+1)=U_new;
U_old=U_new;
end
end
I'm not sure about the initial guess I have.
I really don't know what to do from here. Any help would be appriciated.

Antworten (0)

Kategorien

Mehr zu Mathematics finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by