univariate time series prediction with artificial neural network
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Osman Yakubu
am 26 Dez. 2018
Kommentiert: Parvathy ravindranath
am 25 Dez. 2020
I am new to MATLAB and time series and need help. I have a two column data of electricity consumption (Date, Consumption in kWd). I need a MATLAB code or procedure to enable me predict consumptions. I have 154 days of data and I want to prediction each consumption and plot it on a graph (actual, predicted) and calculate the root mean squared error. Thanks.
3 Kommentare
Kevin Chng
am 4 Jan. 2019
Bearbeitet: madhan ravi
am 4 Jan. 2019
Sorry for my late reply,
(Actual - Predicted) % Errors
(Actual - Predicted).^2 % Squared Error
mean((Actual - Predicted).^2) % Mean Squared Error
RMSE = sqrt(mean((Actual - Predicted).^2)); % Root Mean Squared Error
Akzeptierte Antwort
Kevin Chng
am 4 Jan. 2019
refer to the link : https://www.mathworks.com/help/deeplearning/ref/narnet.html. Replace the dataset with your dataset.
For Calculating RMSE,
RMSE = sqrt(mean((Actual - Predicted).^2));
1 Kommentar
Parvathy ravindranath
am 25 Dez. 2020
Can any one help me solve timeforcasting using deep learning in OCTAVE
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!