- Initialize the values for weights, biases, learning rate, momentum coefficient, and other hyperparameters.
- Loop through the entire dataset or till convergence and perform the following operations iteratively:
- Forward pass, calculate the node values.
- Calculate the loss function and perform back propagation and update the gradient and momentum.
- Update the weights and biases.
update weights and bias in neural network by sgdm
    8 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
How to update weights and bias in neural networks using stochastic gradient descent with momentum sgdm using equations?  
0 Kommentare
Antworten (1)
  Balaji
      
 am 27 Sep. 2023
        Hello Ahmed,
I understand you want to implement neural networks using stochastic gradient descent with momentum.
For which you have to :
Here is an example code :
% Initialize network parameters
learning_rate = 0.01;
momentum = 0.9;
num_epochs = 100;
% Initialize weights and biases
weights = randn(2, 1);  % Example: 2 input neurons
biases = randn(1);
% Initialize momentum terms
prev_delta_weights = zeros(size(weights));
prev_delta_biases = zeros(size(biases));
% Iterate through the training data
for epoch = 1:num_epochs
    % Perform forward pass and backpropagation for each training sample
    % Sample input and target output
    input = randn(2, 1);
    target_output = 0.5;
    % Forward pass
    output = weights' * input + biases;
    % Calculate error
    error = output - target_output;
    % Backpropagation
    gradient_weights = input * error;
    gradient_biases = error;
    % Update gradients with momentum
    delta_weights = learning_rate * gradient_weights + momentum * prev_delta_weights;
    delta_biases = learning_rate * gradient_biases + momentum * prev_delta_biases;
    % Update weights and biases
    weights = weights - delta_weights;
    biases = biases - delta_biases;
    % Update momentum terms
    prev_delta_weights = delta_weights;
    prev_delta_biases = delta_biases;
end
0 Kommentare
Siehe auch
Kategorien
				Mehr zu Define Shallow Neural Network Architectures finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

