Eshelby's tensor for three dimensional mesh
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Dear all,
Seasons' greetings.
I am trying to find out the Eshelby's tensor for superellipsoid system. I am following the protocol of finding flux integral from this link https://www3.nd.edu/~nancy/Math20550/Matlab/Assignments/SurfaceIntegrals/surfaceintegrals.html#27
The code returns me the symbolic coefficients, rather than any numeric value.
Please help.
%%%%%%%%%%%%%%% designing superellipsoid %%%%%%%%%%%%%%%%%
%declare constants%
a1=25; a2=25; a3=25; epsilon1=1; epsilon2=1; epsilon3=1;
n=100;
%declare variables%
etamax=pi/2; etamin=-pi/2;
wmax=pi; wmin=-pi;
deta=(etamax-etamin)/n;
dw=(wmax-wmin)/n;
[i,j] = meshgrid(1:n+1,1:n+1);
eta = etamin + (i-1) * deta; w = wmin + (j-1) * dw;
%%%%%%%%%%%%%%% crating symbolic variables %%%%%%%%%%%%%%%%%
syms eta w
ellip=[(a1.*sign(cos(eta)).*abs(cos(eta)).^epsilon1.*sign(cos(w)).*abs(cos(w)).^epsilon1),(a2.*sign(cos(eta)).*abs(cos(eta)).^epsilon2.*sign(sin(w)).*abs(sin(w)).^epsilon2),(a3.*sign(sin(eta)).*abs(sin(eta)).^epsilon3)];
F=[(a1.*sin(eta).*cos(w)) (a2.*sin(eta).*sin(w)) (a3.*cos(eta))];
nds=simplify(cross(diff(ellip,eta),diff(ellip,w)));
Fpar=subs(F,[(a1.*sin(eta).*cos(w)) (a2.*sin(eta).*sin(w)) (a3.*cos(eta))],ellip);
Fj=@(Fpar,nds)Fpar.*transpose(nds);
flux=(symint2(Fj,eta,-pi,pi,w,-(pi/2),(pi/2)));
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!