Feature Extraction using deep autoencoder

4 Ansichten (letzte 30 Tage)
Satz92
Satz92 am 19 Dez. 2018
Bearbeitet: arahiche am 28 Sep. 2023
I have filtered my ecg signal of 108000*1 length and then divided into blocks using window size of 64 samples each. Now i need to extract feature from each window using deep autoencoder in MATLAB. any help or idea how can i perform this? Thanks in advance.

Antworten (1)

BERGHOUT Tarek
BERGHOUT Tarek am 11 Apr. 2019
1) you must create a data set of this windows , dataset =[window1;window2; window3 ...................].
2) train these dataset with an AES.
3) the hidden layer will be your new extructed dataset;
  2 Kommentare
Shankar Parmar
Shankar Parmar am 4 Mär. 2022
Sir,
How can I extract this Hidden Layer in MATLAB using
trainAutoencoder command.
arahiche
arahiche am 28 Sep. 2023
Bearbeitet: arahiche am 28 Sep. 2023
To access the extracted features you need to use encode function.
here is an example;
hiddenSize = 100; % for example
AE_model = trainAutoencoder(Input_data,hiddenSize);
% you can view you model using this function
view(AE_model)
% To access the latent code generated
features = encode(AE_model,Input_data);

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Pattern Recognition and Classification finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by