Can you solve this question? It is Euler method

1 Ansicht (letzte 30 Tage)
Busra Tabak
Busra Tabak am 16 Dez. 2018
Bearbeitet: madhan ravi am 16 Dez. 2018
The model of a nonisothermal batch reactor is given by
dC/dt= -exp(-10./(T+273)).* C;
dT/dt=1000*exp(-10./(T+273)).* C-10*(T-20);
T(0)=16 'C
C(0)=1 kmol/m^3
Find the concentration, C, and temperature, T, as a function of time. Plot the results.

Akzeptierte Antwort

madhan ravi
madhan ravi am 16 Dez. 2018
Bearbeitet: madhan ravi am 16 Dez. 2018
Since it cannot be solved symbolically we convert it to numerical method:
syms T(t) C(t)
con1=T(0)==16 ;
con2=C(0)==1 ;
ode1=diff(C) == -exp(-10./(T+273)).* C;
ode2=diff(T) == 1000*exp(-10./(T+273)).* C-10*(T-20);
vars = [T(t) ; C(t)]
V = odeToVectorField([ode1,ode2])
M = matlabFunction(V,'vars', {'t','Y'})
interval = [0 5]; %time interval
y0 = [16 1]; %initial conditions
ySol = ode45(M,interval,y0);
tValues = linspace(interval(1),interval(2),1000);
yValues = deval(ySol,tValues,1); %number 1 denotes first solution likewise you can mention 2 solution
plot(tValues,yValues,'-o')
figure
yValues = deval(ySol,tValues,2);
plot(tValues,yValues,'-or')
Screen Shot 2018-12-16 at 3.47.37 PM.png
Screen Shot 2018-12-16 at 3.47.45 PM.png
  2 Kommentare
Busra Tabak
Busra Tabak am 16 Dez. 2018
perfect!!! thank you very much :))
madhan ravi
madhan ravi am 16 Dez. 2018
Bearbeitet: madhan ravi am 16 Dez. 2018
Anytime :) , if it helped you make sure to accept the answer .

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by