how can i get an improved Euler's method code for this function?

23 Ansichten (letzte 30 Tage)
dy = @(x,y).2*x*y;
f = @(x).2*exp(x^2/2);
x0=1;
xn=1.5;
y=1;
h=0.1;
fprintf ('x \t \t y (euler)\t y(analytical) \n') % data table header
fprintf ('%f \t %f\t %f\n' ,x0,y,f(x0));
for x = x0 : h: xn-h
y = y + dy(x,y)*h;
x = x + h ;
fprintf (
'%f \t %f\t %f\n' ,x,y,f(x));
end
  2 Kommentare
FastCar
FastCar am 16 Dez. 2018
Euler has its limit to solve differential equations. You can change the integration step going towards the optimum step that is given by the minimum of the sum of the truncation error and step error, but you cannot improve further. What do you mean by improve?
Ibrahem abdelghany ghorab
Ibrahem abdelghany ghorab am 17 Dez. 2018
modified method
and i what 4Runge-kutta for this function dy = @(x,y).2*x*y;

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Are Mjaavatten
Are Mjaavatten am 17 Dez. 2018
There are two problems with your code:
  • The analytical solution is incorrect
  • You increment x inside the for loop. Don't. The for loop does this automatically.
Here is a corrected version:
a = 0.2;
y0 = 1;
x0 = 1;
xn = 1.5;
h = 0.1;
dy = @(x,y)a*x*y; % dy/dx
f = @(x) y0*exp(a/2*(x.^2-1)); % Correct analytic solution
y = y0;
fprintf ('x \t \t y (euler)\t y(analytical) \n') % data table header
fprintf ('%f \t %f\t %f\n' ,x0,y,f(x0));
for x = x0+h : h: xn
y = y + dy(x,y)*h;
fprintf ('%f \t %f\t %f\n' ,x,y,f(x));
end
Choose a smaller step length h to for better accuracy. Alternatively try a higher order method like Runge-Kutta.
  1 Kommentar
Ibrahem abdelghany ghorab
Ibrahem abdelghany ghorab am 17 Dez. 2018
Bearbeitet: Ibrahem abdelghany ghorab am 17 Dez. 2018
modified orImprovedEuler method
and i what 4Runge-kutta for this function dy = @(x,y).2*x*y;

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

James Tursa
James Tursa am 17 Dez. 2018
Bearbeitet: James Tursa am 17 Dez. 2018
The "Modified" Euler's Method is usually referring to the 2nd order scheme where you average the current and next step derivative in order to predict the next point. E.g.,
dy1 = dy(x,y); % derivative at this time point
dy2 = dy(x+h,y+h*dy1); % derivative at next time point from the normal Euler prediction
y = y + h * (dy1 + dy2) / 2; % average the two derivatives for the Modified Euler step
See this link:
  4 Kommentare
Santiago Cerón
Santiago Cerón am 12 Nov. 2020
James, how do you graph that in a plot?

Melden Sie sich an, um zu kommentieren.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by