
Solving a second order differential equation with matlab.
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Marius Turcan
am 14 Dez. 2018
Bearbeitet: madhan ravi
am 15 Dez. 2018
Hey,
I wanted to plot a second order differential equation in Matlab to see how it would look. The equation is the following:
y = x + 2*cos(omega)*y'-y''
This equation corresponds to an IIR filter with the poles on the unit circle. I will be using it to generate harmonic oscillations.
"x" only gives a unit impulse, and omega = 2*pi*(f0/fs), and is used to control the oscillations.
Please show me what I should write to be able to see these oscillations in Matlab.
Thanks in advance.
0 Kommentare
Akzeptierte Antwort
madhan ravi
am 14 Dez. 2018
Bearbeitet: madhan ravi
am 14 Dez. 2018
syms y(x)
dy=diff(y);
dy2=diff(y,2);
omega=5; %your value acheived by 2*pi*(f0/fs) formula
ode=y == x + 2*cos(omega)*dy-dy2 ;
vars = y(x);
V = odeToVectorField(ode)
M = matlabFunction(V,'vars', {'x','Y'})
interval = [0 10]; %time interval
y0 = [0 0]; %initial conditions
ySol = ode45(M,interval,y0);
tValues = linspace(interval(1),interval(2),1000);
yValues = deval(ySol,tValues,1); %number 1 denotes first solution likewise you can mention 2 for the next solution
plot(tValues,yValues)
hold on
yValues = deval(ySol,tValues,2);
plot(tValues,yValues,'r')

2 Kommentare
madhan ravi
am 15 Dez. 2018
Bearbeitet: madhan ravi
am 15 Dez. 2018
Would I be better off implementing the corresponding filter in Simulink and viewing that way?
I have no experience with simulink.. but I am pretty sure it's more handy to simulate
Weitere Antworten (0)
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!