time seris prediction using AR(1) model
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi all, I want to forecast/ predict a time series based on first order Auto Regressive modeles,AR(1). The time series which called "q". For this aim I have done steps below:
- Time series standardization using mean and standard deviation.
- estimation of AR(1) parameter.
The computer programming for above operations is below:
clc; clear;
close all;
q=[50 38 31 24 37 56 54 39 40 38 59 89 41 42 42 26 38 26 25 20 28 33 23]';
mue=mean(q);
stdvn=std(q);
q_standardized =(q-mue)./stdvn;
ar_parameter= ar(q_standardized,1)
present(ar_parameter);
The output of the program is:
Discrete-time IDPOLY model: A(q)y(t) = e(t(
A(q) = 1 - 0.4559 q^-1
Loss function 0.773834 and FPE 0.841124
Sampling interval: 1
Discrete-time IDPOLY model: A(q)y(t) = e(t)
A(q) = 1 - 0.4559 (+-0.1924) q^-1
I need to predict 1000 numbers for t+1 time step using "q" set, which called "qt+1", and follows AR(1) models parameter. How can I do it. |Any help would be appreciated.
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Regression finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!