Analytically and numerically computed arc length
15 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Carlos
am 10 Jul. 2012
Kommentiert: Bilgah Johnson
am 11 Dez. 2020
Hi,
I'm trying to compute the length of a curve defined in parametric form:
t = linspace(0,pi); % Actually t could go from 0 to any angle lower than 2*pi
r = 1 ./ ( 1 - t / (2*pi) );
x = r.*cos(t); y = r.*sin(t);
dx = diff(x); dy = diff(y);
l = sum( sqrt(dx.^2 + dy.^2) ); % Arc length. Linear aprox.
This way the length is equal to 4.4725.
If I do the calculations analytically, I find the length is:
l = -2*pi*log( 1 - angle/(2*pi) ); % Being the initial point angle = 0
using angle = pi the result is 4.3552.
What's the reason of this difference?
Thanks in advance.
0 Kommentare
Akzeptierte Antwort
Teja Muppirala
am 10 Jul. 2012
I'm not sure how you are analytically calculating path length. It seems from your expression that you just integrated r(t) straight up, which is not the correct way to do it. You need to use the formula for path length.
For example, it is given for cylindrical coordinates here:
http://tutorial.math.lamar.edu/Classes/CalcII/PolarArcLength.aspx (Google: arc length cylindrical coordinates)
That equation is difficult to integrate by hand, but it can be done symbolically in MATLAB very easily.
syms r t
r = 1 ./ ( 1 - t / (2*pi) );
ds_dt = sqrt(r^2 + diff(r)^2);
path_length = int(ds_dt,0,pi)
subs(path_length)
You get a long analytical expression for path length, which turns out to be the same answer as you got numerically, 4.47.
2 Kommentare
Bilgah Johnson
am 11 Dez. 2020
i am using this code but I'm not able to get the answer. Please help as soon as possible.

Weitere Antworten (1)
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!