Solving ODE's

12 Ansichten (letzte 30 Tage)
Riaz Patel
Riaz Patel am 26 Nov. 2018
Kommentiert: Riaz Patel am 26 Nov. 2018
Hi all,
I am trying to solve the following ODE's for a given value of u:
Screenshot 2018-11-26 at 11.03.06.png
where:
Screenshot 2018-11-26 at 11.05.02.png
Screenshot 2018-11-26 at 11.04.27.png
and t = T-tau.
I solved the ODE for E using ODE45. The solution returns Nan for the last few values of tau. I also dont know how to take this solution for E(u,tau) and use this to find A(u,tau).
My code is below:
clear;
clc;
%Parameters
%Heston Parameters
S0 = 100;
T = 1;
k = 1.5768;
sigma = 0.0571;
v0 = 0.0175;
vb = 0.0398;
%Hull-White parameters
lambda = 0.05;
r0 = 0.07;
theta = 0.07;
eta = 0.005;
%correlations
pxv = - 0.5711;
pxr = 0.2;
pvr = 0;
tau = T;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
cf = @(t) (1/(4*k))*sigma^2*(1-exp(-k*t));
d = (4*k*vb)/(sigma^2);
lambdaf = @(t) (4*k*v0*exp(-k*t))./(sigma^2*(1-exp(-k*t)));
lambdaC = @(t) sqrt(cf(t).*(lambdaf(t)-1) + cf(t)*d + (cf(t)*d)./(2*(d+lambdaf(t))));
D1 = @(u) sqrt((sigma*pxv*1i*u-k).^2 - sigma^2*1i*u.*(1i*u-1));
g = @(u) (k-sigma*pxv*1i*u - D1(u))./(k-sigma*pxv*1i*u + D1(u));
B = @(u,tau) 1i*u;
C = @(u,tau) (1i*u-1)*(1/lambda)*(1-exp(-lambda*tau));
D = @(u,tau) ((1 -exp(-D1(u)*tau))./(sigma^2*(1-g(u).*exp(-D1(u)*tau)))).*(k-sigma*pxv*1i*u-D1(u));
%ODE's that are solved numerically
muxi = @(t) (1/(2*sqrt(2)))*(gamma(0.5*(1+d))/sqrt(cf(t)))*(hypergeom(-0.5,0.5*d,-0.5*lambdaf(t))*(1/gamma(0.5*d))*sigma^2*exp(-k*t)*0.5 + hypergeom(0.5,1+0.5*d,-0.5*lambdaf(t))*(1/gamma(1+0.5*d))*((v0*k)/(1-exp(k*t))));
phixi = @(t) sqrt(k*(vb-v0)*exp(-k*t) - 2*lambdaC(t)*muxi(t));
u = 10;
EODE = @(tau,y) pxr*eta*B(u,tau)*C(u,tau) + phixi(T-tau)*pxv*B(u,tau)*y + sigma*phixi(T-tau)*D(u,tau)*y;
AODE = @(tau,y) k*vb*D(u,tau) + lambda*theta*C(u,tau) + muxi(T-tau)*E() +eta^2*0.5*C(u,tau)^2 + (phixi(T-tau))^2*0.5*E()^2;
%what do i put in for E() in the line above?
[tau, E] = ode45(EODE,[0 T],0);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Antworten (1)

madhan ravi
madhan ravi am 26 Nov. 2018
Bearbeitet: madhan ravi am 26 Nov. 2018
option 1;
tau(~isnan(E))
E(~isnan(E)) %removes nan values
option 2;
Let even function play the role it stops the evaluation when solution become a NaN
clear;
clc;
%Parameters
%Heston Parameters
S0 = 100;
T = 1;
k = 1.5768;
sigma = 0.0571;
v0 = 0.0175;
vb = 0.0398;
%Hull-White parameters
lambda = 0.05;
r0 = 0.07;
theta = 0.07;
eta = 0.005;
%correlations
pxv = - 0.5711;
pxr = 0.2;
pvr = 0;
tau = T;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
cf = @(t) (1/(4*k))*sigma^2*(1-exp(-k*t));
d = (4*k*vb)/(sigma^2);
lambdaf = @(t) (4*k*v0*exp(-k*t))./(sigma^2*(1-exp(-k*t)));
lambdaC = @(t) sqrt(cf(t).*(lambdaf(t)-1) + cf(t)*d + (cf(t)*d)./(2*(d+lambdaf(t))));
D1 = @(u) sqrt((sigma*pxv*1i*u-k).^2 - sigma^2*1i*u.*(1i*u-1));
g = @(u) (k-sigma*pxv*1i*u - D1(u))./(k-sigma*pxv*1i*u + D1(u));
B = @(u,tau) 1i*u;
C = @(u,tau) (1i*u-1)*(1/lambda)*(1-exp(-lambda*tau));
D = @(u,tau) ((1 -exp(-D1(u)*tau))./(sigma^2*(1-g(u).*exp(-D1(u)*tau)))).*(k-sigma*pxv*1i*u-D1(u));
%ODE's that are solved numerically
muxi = @(t) (1/(2*sqrt(2)))*(gamma(0.5*(1+d))/sqrt(cf(t)))*(hypergeom(-0.5,0.5*d,-0.5*lambdaf(t))*(1/gamma(0.5*d))*sigma^2*exp(-k*t)*0.5 + hypergeom(0.5,1+0.5*d,-0.5*lambdaf(t))*(1/gamma(1+0.5*d))*((v0*k)/(1-exp(k*t))));
phixi = @(t) sqrt(k*(vb-v0)*exp(-k*t) - 2*lambdaC(t)*muxi(t));
u = 10;
EODE = @(tau,y) pxr*eta*B(u,tau)*C(u,tau) + phixi(T-tau)*pxv*B(u,tau)*y + sigma*phixi(T-tau)*D(u,tau)*y;
AODE = @(tau,y) k*vb*D(u,tau) + lambda*theta*C(u,tau) + muxi(T-tau)*E() +eta^2*0.5*C(u,tau)^2 + (phixi(T-tau))^2*0.5*E()^2;
%what do i put in for E() in the line above?
opts = odeset('Events',@stopfunc) %it will stop integration when distance becomes zero
[tau, E] = ode45(EODE,[0 T],0,opts); %function call
function [position,isterminal,direction] = stopfunc(t,x) %function definition
position = x(1); % The value that we want to be zero
isterminal = 1; % Halt integration
direction = ~isnumeric(x(1)); % The zero can be approached from either direction
end
  3 Kommentare
madhan ravi
madhan ravi am 26 Nov. 2018
Perfect Torsten ! , you are the man!
Riaz Patel
Riaz Patel am 26 Nov. 2018
Thanks guys!
So if im understanding correctly, you are writing this as a system of ODE's? what does the y(1) mean?
Secondly, why does this piece of code below not work? And how do you save the output? Do you get an output for E,A and tau? Sorry, I am new to solving differential equations numerically.
ode45(EAODE,[0 T],[0 0]);

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by