How to solve a partial derivative equation in MATLAB?
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello, orgininally I solved this set of differential equations using Euler's method:

they were solved with this:
for i=1:1:500000
t(i+1)=t(i)+dt;
u(i+1) = u(i)+ dt*((1/e)*((k*u(i)*(u(i)-a)*(1-u(i)))-v(i)));
v(i+1) = v(i)+ dt*(u(i)-v(i));
end
Now I have a similar set of equations as shown below:

Can anyone explain how I might go about adjusting my code to solve for this partial derivative in the new equations? Thank you so much!
Here is the full source code:
%Clear command window and workspace
clear
close all
clc
% Fitzhugh-Nagoma model parameters
e=0.03; k=3; a=0.05;
i = 0.001;
figure(1);
hold on
u=zeros(100000,1);
v=zeros(100000,1);
t=zeros(100000,1);
% Initial conditions:
u(1)=0.6;
v(1)=0.0;
t(1)=0;
dt=0.001;
%==========================================================================
% Forvard Euler Method, for soluing the ODE
%==========================================================================
for i=1:1:500000
t(i+1)=t(i)+dt;
u(i+1) = u(i)+ dt*((1/e)*((k*u(i)*(u(i)-a)*(1-u(i)))-v(i)));
v(i+1) = v(i)+ dt*(u(i)-v(i));
end
% Getting the plot
figure(1);
plot(t,u)
legend('u','Trajectory')
title('Time Series Plot')
xlabel('Time')
ylabel('u')
xlim([0 5])
0 Kommentare
Antworten (1)
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!