eigenvalues and eigenvector manual calculation

7 Ansichten (letzte 30 Tage)
muhammad iqbal habibie
muhammad iqbal habibie am 19 Nov. 2018
Kommentiert: Manoj Samal am 3 Dez. 2020
I have a matrix 2x2, for example A= [ 0.064911 3.276493; 3.276493 311.2073]. I would like to calculate the eigenvalues and eigenvectors. I have calculated the eigenvalues by manual and match it with matlab is match. the manual of eigenvalues :
eigenvalues were calculated by |A- λ * I|=0
so I received the eigenvalues (0.0304;311.2418). Now I am trying to calculated the eigenvectors that I found the way like this
B= eig(A) ; this is calculating the eigenvalues
(v,d)=eig(A)
I got v= (-0.9999 0.0105; 0.0105 0.9999) and d = ( 0.0304 0 ; 0 311.2418).
I would like to ask how to calculate manual of matrix v? Hope someone can help. Thank you.
  1 Kommentar
Manoj Samal
Manoj Samal am 3 Dez. 2020
By using (v,d)=eig(A) gives v= normalised eigen vector(not eigen vector) and d=eigen values
N11=1/sqrt(1^2+3^2+1^2)=1/sqrt11
N21=3/ sqrt(3^2+2^2+1^2)=1/sqrt14 and so on....

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Torsten
Torsten am 19 Nov. 2018
Bearbeitet: Torsten am 19 Nov. 2018
By solving
(A-lambda1*I)*v1 = 0
and
(A-lambda2*I)*v2 = 0
You could use
v1 = null(A-lambda1*I)
and
v2 = null(A-lambda2*I)
to achieve this.
Best wishes
Torsten.
  7 Kommentare
muhammad iqbal habibie
muhammad iqbal habibie am 19 Nov. 2018
I try manual it is hard though
A- λ * I
so
[0.064911 3.276493; 3.276493 311.2073] - [0.0304 0; 0 311.2418]
= [0.034511 3.276493; 3.276493 -0.0345]
how must I suppose to be v = (-0.9999 0.0105; 0.0105 0.9999)
any suggestion for manual calculation?
Torsten
Torsten am 19 Nov. 2018
([0.064911 3.276493; 3.276493 311.2073] - [0.0304 0; 0 0.0304])*[v11; v21]=[0;0]
Solve for v1=[v11;v21] and normalize the vector to get the first column of v.
([0.064911 3.276493; 3.276493 311.2073] - [311.2418 0; 0 311.2418])*[v12;v22]=[0;0]
Solve for v2=[v12;v22] and normalize the vector to get the second column of v.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

Bruno Luong
Bruno Luong am 19 Nov. 2018
No cheating, this applies for 2x2 only
A= [ 0.064911 3.276493;
3.276493 311.2073];
lambda=eig(A); % you should do it by solving det(A-lambda I)=0
V = ones(2);
for k=1:2
B = A-lambda(k)*eye(size(A));
% select pivot column
[~,j] = max(sum(B.^2,1));
othercolumn = 3-j;
V(j,k) = -B(:,j)\B(:,othercolumn);
end
% Optional: Make eigenvectors l2 norm = 1
V = V ./ sqrt(sum(V.^2,1));
disp(V)
  2 Kommentare
muhammad iqbal habibie
muhammad iqbal habibie am 20 Nov. 2018
Is it possible from
A= [ 0.064911 3.276493;
3.276493 311.2073];
to v = (-0.9999 0.0105; 0.0105 0.9999) with eigenvalues (0.0304;311.2418) using excel?
Torsten
Torsten am 21 Nov. 2018
http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=9&ved=2ahUKEwjF8uef_-TeAhUJ3qQKHZB3BSsQFjAIegQIBxAC&url=http%3A%2F%2Fwww-2.rotman.utoronto.ca%2F~hull%2Fsoftware%2FEigenvalue%26vector.xls&usg=AOvVaw2og1xfxU96ox_lDmx3k6GB

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Linear Algebra finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by