Solving the Ordinary Differential Equation

4 Ansichten (letzte 30 Tage)
Yeahh
Yeahh am 15 Nov. 2018
Bearbeitet: madhan ravi am 15 Nov. 2018
I am not sure how to solve these systems of differential equation. However, the final graph representation of the result is two exponential curves for and in respect to time.
Also, with =, the variable ks and BP are all constant.

Akzeptierte Antwort

madhan ravi
madhan ravi am 15 Nov. 2018
Bearbeitet: madhan ravi am 15 Nov. 2018
EDITED
use dsolve()
or
Alternate method using ode45:
Screen Shot 2018-11-15 at 11.17.17 AM.png
tspan=[0 1];
y0=[0;0];
[t,x]=ode45(@myod,tspan,y0)
plot(t,x)
lgd=legend('Cp(t)','Cr(t)')
lgd.FontSize=20
function dxdt=myod(t,x)
tau=2;
ks=3;
BP=6;
k1=5;
k2=7;
x(1)=exp(-t)/tau; %x(1)->Cp
dxdt=zeros(2,1);
dxdt(1)=k1*x(1)-(k2/(1+BP))*x(2); %x(2)->Cr
dxdt(2)=k1*x(1)-k2*x(2);
end
  9 Kommentare
Yeahh
Yeahh am 15 Nov. 2018
Bearbeitet: madhan ravi am 15 Nov. 2018
Thank you so much, I have one last question.
What doest this line means?
dxdt=zeros(2,1);
madhan ravi
madhan ravi am 15 Nov. 2018
Bearbeitet: madhan ravi am 15 Nov. 2018
Anytime :), It is called preallocation(please google it) imagine as a container to store something. Make sure to accept for the answer if it was helpful.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by