
Solving the Ordinary Differential Equation
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Yeahh
am 15 Nov. 2018
Bearbeitet: madhan ravi
am 15 Nov. 2018
I am not sure how to solve these systems of differential equation. However, the final graph representation of the result is two exponential curves for
and
in respect to time.
Also, with
=
, the variable ks and BP are all constant.
0 Kommentare
Akzeptierte Antwort
madhan ravi
am 15 Nov. 2018
Bearbeitet: madhan ravi
am 15 Nov. 2018
EDITED
use dsolve()
or
Alternate method using ode45:

tspan=[0 1];
y0=[0;0];
[t,x]=ode45(@myod,tspan,y0)
plot(t,x)
lgd=legend('Cp(t)','Cr(t)')
lgd.FontSize=20
function dxdt=myod(t,x)
tau=2;
ks=3;
BP=6;
k1=5;
k2=7;
x(1)=exp(-t)/tau; %x(1)->Cp
dxdt=zeros(2,1);
dxdt(1)=k1*x(1)-(k2/(1+BP))*x(2); %x(2)->Cr
dxdt(2)=k1*x(1)-k2*x(2);
end
9 Kommentare
madhan ravi
am 15 Nov. 2018
Bearbeitet: madhan ravi
am 15 Nov. 2018
Anytime :), It is called preallocation(please google it) imagine as a container to store something. Make sure to accept for the answer if it was helpful.
Weitere Antworten (0)
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!