Quick questions on mechanical vibrations
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
yung zhen lek
am 13 Nov. 2018
Kommentiert: yung zhen lek
am 14 Nov. 2018
a)Use the same model as in first case but for c=0.2 and let the driving frequency be constant ωdr=4 with zero initial conditions. Plot the motion of the system and describe the motion.
b) Let the force be accelerating such that (F sin(5t^2 /1000)). Plot the response (for c=0.2) for each mass as function of angular frequency. Explain the result
I have already solved for part a, however for part b, it requires me to plot the response for each mass as a function of angular frequency, does any one have any idea on how do I go about it? I have already changed the force F to the required parameters.
Main code:
% Simulation of forced 2DOF system with ode45
clear all
clc
global A B F Z I wdr
c=0.2;
m=1;
k=100;
c=0.2;
F0=10;
t0=0;
t1=100;
M=[m 0 0 ;0 m 0 ; 0 0 m];
K=[2*k -k 0;-k 2*k -k;0 -k k];
C=[2*c -c 0;-c 2*c -c;0 -c c];
for t=t0:t1
f=[0 0 F0*sin(5*t^2/1000)]';
end
% Force vector
wdr=4; % Driving frequency
A=M\K;
B=M\C;
F=M\f;
Z=zeros(3); % Zero matrix
I=eye(3); % Diagonal matrix
x0=[0 0 0 0 0 0]'; % Initial conditions
[t,x]=ode45('Fun1',[t0 t1],x0);
dx=[t,x]
plot(t,x(:,1),t,x(:,2));
Func 1 code:
function dx=Fun2(t,x)
global A B F Z I wdr
dx=zeros(6,1);
dx=[Z I ; -A -B] *x+[[0 0 0]' ; F]*sin(wdr*t);
end
0 Kommentare
Akzeptierte Antwort
KSSV
am 14 Nov. 2018
Check the below code......you should run a loop for each mass. It will give output as R. It has the required results of each mass.
function R = myfunction()
global A B F Z I wdr
c=0.2;
mass=1:5; % masses
% loop for each mass
R = cell(length(mass),1) ; %Result
for i = 1:length(mass)
m = mass(i) ;
k=100;
c=0.2;
F0=10;
t0=0;
t1=100;
M=[m 0 0 ;0 m 0 ; 0 0 m];
K=[2*k -k 0;-k 2*k -k;0 -k k];
C=[2*c -c 0;-c 2*c -c;0 -c c];
for t=t0:t1
f=[0 0 F0*sin(5*t^2/1000)]';
end
% Force vector
wdr=4; % Driving frequency
A=M\K;
B=M\C;
F=M\f;
Z=zeros(3); % Zero matrix
I=eye(3); % Diagonal matrix
x0=[0 0 0 0 0 0]'; % Initial conditions
[t,x]=ode45(@Fun1,[t0 t1],x0);
R{i}=[t,x] ;
plot(t,x(:,1),t,x(:,2));
title(sprintf('mass = %s',num2str(m)))
drawnow
end
end
function dx=Fun1(t,x)
global A B F Z I wdr
dx=zeros(6,1);
dx=[Z I ; -A -B] *x+[[0 0 0]' ; F]*sin(wdr*t);
end
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Vibration Analysis finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!