I am writing a code to solve 5 simultaneous equations with 5 unknowns. I am using the function vpasolve, however the code takes 50 minutes to run. Is there a quicker way of solving the equations?
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
JS
am 11 Nov. 2018
Kommentiert: Star Strider
am 12 Nov. 2018
syms Qa_1 Q1_1 Q2_1 Q3_1 Q4_1;
eqn1 = (Qa_1 == Q1_1 + Q2_1 + Q3_1 + Q4_1);
eqn2 = (Qa_1^2/60.51 + Q1_1^2/0.8616 == 1.035/Q1_1 + 24.3/Qa_1);
eqn3 = (Qa_1^2/60.51 + Q2_1^2/1.346 == 1.321/Q2_1 + 16.57/Qa_1);
eqn4 = (Qa_1^2/60.51 + Q3_1^2/1.346 == 1.236/Q3_1 + 8.873/Qa_1);
eqn5 = (Qa_1^2/60.51 + Q4_1^2/1.346 == 1.044/Q4_1 + 1.619/Qa_1);
assume (Qa_1, 'real');
assume (Q1_1, 'real');
assume (Q2_1, 'real');
assume (Q3_1, 'real');
assume (Q4_1, 'real');
[sol_Qa_1, sol_Q1_1, sol_Q2_1, sol_Q3_1, sol_Q4_1] = vpasolve([eqn1, eqn2, eqn3, eqn4, eqn5], [Qa_1, Q1_1, Q2_1, Q3_1, Q4_1], [0 Inf; 0 Inf; 0 Inf; 0 Inf; 0 Inf])
0 Kommentare
Akzeptierte Antwort
Star Strider
am 11 Nov. 2018
Bearbeitet: Star Strider
am 11 Nov. 2018
I would do this numerically, using fsolve. It requires a slight re-write of your equations to make them all implicit.
Example —
syms Qa_1 Q1_1 Q2_1 Q3_1 Q4_1 real
eqn1 = (Qa_1 - (Q1_1 + Q2_1 + Q3_1 + Q4_1));
eqn2 = (Qa_1^2/60.51 + Q1_1^2/0.8616 - (1.035/Q1_1 + 24.3/Qa_1));
eqn3 = (Qa_1^2/60.51 + Q2_1^2/1.346 - (1.321/Q2_1 + 16.57/Qa_1));
eqn4 = (Qa_1^2/60.51 + Q3_1^2/1.346 - (1.236/Q3_1 + 8.873/Qa_1));
eqn5 = (Qa_1^2/60.51 + Q4_1^2/1.346 - (1.044/Q4_1 + 1.619/Qa_1));
Eqnsfcn = matlabFunction([eqn1, eqn2, eqn3, eqn4, eqn5], 'Vars',{[Qa_1, Q1_1, Q2_1, Q3_1, Q4_1]});
B0 = rand(1,5)*100;
[B,fval] = fsolve(Eqnsfcn, B0)
This was almost instantaneous. There are likely multiple roots, so experiment with different initial parameter estimates (here ‘B0’).
EDIT — This version makes it easier to track the individual variable names:
Eqnsfcn = matlabFunction([eqn1, eqn2, eqn3, eqn4, eqn5], 'Vars',{Qa_1, Q1_1, Q2_1, Q3_1, Q4_1});
B0 = rand(1,5)*100;
[B,fval] = fsolve(@(b)Eqnsfcn(b(1),b(2),b(3),b(4),b(5)), B0)
4 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Equation Solving finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!