How can I convert set of symbolic functions into function handle so that they can be used as input to ode45?
10 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Yaswanth Sai
am 7 Nov. 2018
Kommentiert: Yaswanth Sai
am 10 Nov. 2018
For example, I have to solve the following equations
if true
syms x(t) y(t) z(t)
eq1 = diff(x,t) == -x+3z;
eq2 = diff(y,t) == -y+2z;
eq3 = diff(z,t) == x^2-2z;
end
I can use ode45.
if true
f = @(t,x) [-x(1)+3*x(3);-x(2)+2*x(3);x(1)^2-2*x(3)];
[t,xa] = ode45(f,[0 1.5],[0 1/2 3]);
end
Is there any way I can generate the following line automatically from the equations I get(they are symbolic).
f = @(t,x) [-x(1)+3*x(3);-x(2)+2*x(3);x(1)^2-2*x(3)];
In my case, the equation is generated inside the code, so I don't know the coefficients beforehand to write that line.
2 Kommentare
Steven Lord
am 7 Nov. 2018
You could convert the symbolic expression into a MATLAB function as madhan ravi suggested, but have you tried the functionality included in Symbolic Math Toolbox to solve systems of differential equations directly?
Akzeptierte Antwort
madhan ravi
am 7 Nov. 2018
Bearbeitet: madhan ravi
am 7 Nov. 2018
EDITED
syms x(t) y(t) z(t)
eq1 = diff(x,t) == -x+3*z;
eq2 = diff(y,t) == -y+2*z;
eq3 = diff(z,t) == x^2-2*z;
vars = [x(t); y(t); z(t)]
V = odeToVectorField([eq1,eq2,eq3])
M = matlabFunction(V,'vars', {'t','Y'})
interval = [0 1.5]; %time interval
y0 = [0 1/2 3]; %initial conditions
ySol = ode45(M,interval,y0);
tValues = linspace(interval(1),interval(2),1000);
yValues = deval(ySol,tValues,1); %number 1 denotes first solution likewise you can mention 2 & 3 for the next two solutions
plot(tValues,yValues)
5 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!