How can I do this L1 integral minimization?
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Greetings,
I have the following integral

where kdx = [pi/16, pi/2], and

I want to minimize the integral above and solving corresponding a_j. But I have no clue how do to it. Can anyone give me some hint?
Thanks.
0 Kommentare
Antworten (2)
Bruno Luong
am 29 Okt. 2018
Bearbeitet: Bruno Luong
am 29 Okt. 2018
The problem of linear L1 fit (your case); meaning
argmin_x | M*x - y |_l1
argmin sum abs(M*x - y)
can be reformulated and solved by linear programming (opt toolbox required) using slack variables trick as following
n = length(y);
Aeq = [M speye(n) -speye(n)];
Aeqpr=nonzeros(Aeq);
beq = y(:);
c = [zeros(1,size(M,2)) ones(1,2*n)];
LB = [-inf(1,size(M,2)) zeros(1,2*n)];
UB = [];
c = c(:);
LB = LB(:);
UB = UB(:);
x0 = zeros(size(c)); % guess vector
[sol, f, exitflag] = linprog(c,[],[], Aeq, beq, LB, UB, x0);
x = sol(1:size(M,2));
You just need to build M with sin(k*j*dx) and log(dx).
8 Kommentare
Bruno Luong
am 30 Okt. 2018
Bearbeitet: Bruno Luong
am 30 Okt. 2018
I don't know how to type a curly "l" (lowercase L), which is the right notation.
Siehe auch
Kategorien
Mehr zu Particle Swarm finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!