Multivariate Regression Parameter Optimization
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I am trying to find the values that will optimize parameters in an equation. Two measured values are related by an equation to equal a known value.
The equation is: y=a*(x^b)*(z^c)
x & z = measured values (vectors of length n)
a,b & c = the unknown free parameters (single values)
I also have known values Y that y should approximately equal. Therefore, I want to find the set of parameters a,b&c that minimizes the difference between Y and y (given all measured values).
What is the best way to do this in MATLAB?
Thanks!
-Andrew
0 Kommentare
Akzeptierte Antwort
Teja Muppirala
am 3 Jul. 2012
NLINFIT is good.
NonLinearModel.fit is also good.
But since your problem involves fitting a surface with only two independent variables, it can be done very simply using the Curve Fitting Toolbox functions.
You can do it interactively using CFTOOL and then generate the MATLAB code automatically (recommended), or if you want to write the code out by hand yourself, you can do something along these lines:
x = rand(100,1);
z = rand(100,1);
atrue = 2.5;
btrue = 1.7;
ctrue = 1.2;
Y = atrue*(x.^btrue).*(z.^ctrue) + 0.05*randn(size(x)) ;
scatter3(x,z,Y);
hold all;
F = fittype('a*x^b*z^c','Independent',{'x' 'z'});
M = fit([x z],Y,F) % Or specify an initial guess: M = fit([x z],Y,F,'Start',[0 0 0])
plot(M)
Weitere Antworten (1)
the cyclist
am 3 Jul. 2012
I think that the function nlinfit() from the Statistics Toolbox will do what you want.
1 Kommentar
Siehe auch
Kategorien
Mehr zu Get Started with Curve Fitting Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!