Is there any code or command for doubling a point ?
11 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Maria Hameed
am 23 Okt. 2018
Kommentiert: Ammy
am 21 Feb. 2022
I have an elliptic curve y*2=x*3+148x+225 mod 5003 I took G=(1355,2421) as the shared key I want to find points as (G,2G,3G,4G,......5003G)
2 Kommentare
Akzeptierte Antwort
Bruno Luong
am 24 Okt. 2018
% EL parameters
a = 148
b = 225
% Group Z/pZ parameter
p = 5003
% Point
G = [1355,2421];
% Compute G2 = 2*G
x = G(1);
y = G(2);
d = mod(2*y,p);
[~,invd,~] = gcd(d,p);
n = mod(3*x*x + a,p);
lambda = mod(n*invd,p);
x2 = mod(lambda*lambda - 2*x,p);
y2 = mod(lambda*(x-x2)-y,p);
G2 = [x2 y2]
G2 =
533 2804
6 Kommentare
Weitere Antworten (4)
Bruno Luong
am 26 Okt. 2018
EL = struct('a', 148, 'b', 225, 'p', 5003);
% Point
G = [1355,2421];
% Compute C*G for C=1,2,...,maxC
maxC = 5003;
maxk = nextpow2(maxC);
CG = zeros(maxC,2);
j = 1;
CG(j,:) = G;
G2k = G;
% precompute the inverse of 1...p-1, and stores in table itab
p = EL.p;
itab = p_inverse(1:p-1, p);
for k=1:maxk
for i=1:j-1
j = j+1;
CG(j,:) = EL_add(G2k,CG(i,:),EL,itab);
if j == maxC
break
end
end
if j == maxC
break
end
G2k = EL_add(G2k,G2k,EL,itab);
j = j+1;
CG(j,:) = G2k;
end
CG
function ia = p_inverse(a, p)
[~,ia] = gcd(a,p);
end
function R = EL_add(P,Q,EL,itab)
% R = ELadd(P,Q,EL,itab)
% Perform addition: R = P + Q on elliptic curve
% P, Q, R are (1x2) arrays of integers in [0,p) or [Inf,Inf] (null element)
% (EL) is a structure with scalar fields a, b, p.
% Together they represent the elliptic curve y^2 = x^3 + a*x + b on Z/pZ
% p is prime number
% itab is array of length p-1, inverse of 1,....,p-1 in Z/pZ
% WARNING: no overflow check, work on reasonable small p only
if ELiszero(P)
R = Q;
elseif ELiszero(Q)
R = P;
else
p = EL.p;
xp = P(1);
yp = P(2);
xq = Q(1);
yq = Q(2);
d = xq-xp;
if d ~= 0
n = yq-yp;
else
if yp == yq
d = 2*yp;
n = 3*xp*xp + EL.a;
else % P == -Q
R = [Inf,Inf];
return
end
end
invd = itab(mod(d,p)); % [~,invd,~] = gcd(d,p);
lambda = mod(n*invd,p); % slope
xr = lambda*lambda - xp - xq;
yr = lambda*(xp-xr) - yp;
R = mod([xr, yr],p);
end
end
function b = ELiszero(P)
% Check if the EL point is null-element
b = any(~isfinite(P));
end
11 Kommentare
Bruno Luong
am 21 Feb. 2022
As stated in my code, for illustration only, there is no careful check for overflow of calculation. This code is more robust but still not bulet-proof
EL = struct('a', 0, 'b', 2, 'p', 957221);
% Point
G = [762404,61090];
% Compute C*G for C=1,2,...,maxC
maxC = 5003;
maxk = nextpow2(maxC);
CG = zeros(maxC,2);
j = 1;
CG(j,:) = G;
G2k = G;
% precompute the inverse of 1...p-1, and stores in table itab
p = EL.p;
itab = p_inverse(1:p-1, p);
for k=1:maxk
for i=1:j-1
j = j+1;
CG(j,:) = EL_add(G2k,CG(i,:),EL,itab);
if j == maxC
break
end
end
if j == maxC
break
end
G2k = EL_add(G2k,G2k,EL,itab);
j = j+1;
CG(j,:) = G2k;
end
CG
function ia = p_inverse(a, p)
[~,ia] = gcd(a,p);
end
function R = EL_add(P,Q,EL,itab)
% R = ELadd(P,Q,EL,itab)
% Perform addition: R = P + Q on elliptic curve
% P, Q, R are (1x2) arrays of integers in [0,p) or [Inf,Inf] (null element)
% (EL) is a structure with scalar fields a, b, p.
% Together they represent the elliptic curve y^2 = x^3 + a*x + b on Z/pZ
% p is prime number
% itab is array of length p-1, inverse of 1,....,p-1 in Z/pZ
% WARNING: no overflow check, work on reasonable small p only
if ELiszero(P)
R = Q;
elseif ELiszero(Q)
R = P;
else
p = EL.p;
xp = P(1);
yp = P(2);
xq = Q(1);
yq = Q(2);
d = xq-xp;
if d ~= 0
n = yq-yp;
else
if yp == yq
d = 2*yp;
n = 3*xp*xp + EL.a;
else % P == -Q
R = [Inf,Inf];
return
end
end
d = mod(d,p);
n = mod(n,p);
invd = itab(d); % [~,invd,~] = gcd(d,p);
lambda = mod(n*invd,p); % slope
xr = lambda*lambda - xp - xq;
xr = mod(xr,p);
yr = lambda*(xp-xr) - yp;
yr = mod(yr,p);
R = [xr, yr];
end
end
function b = ELiszero(P)
% Check if the EL point is null-element
b = any(~isfinite(P));
end
KSSV
am 23 Okt. 2018
G=[1355,2421] ;
P = 1:1:5003 ;
Q = P'.*G ;
8 Kommentare
Walter Roberson
am 24 Okt. 2018
Should the definition of s really divide by 2 and multiply the results by y, or should it be dividing by (2*y)?
Bruno Luong
am 23 Okt. 2018
I reiterate my answer previously, you need first to program the "+" operator for EL, then doubling point 2*Q is simply Q "+" Q.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Special Values finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!