reduce memory for matrix multiplication

7 Ansichten (letzte 30 Tage)
behzad
behzad am 22 Okt. 2018
Kommentiert: Bruno Luong am 24 Okt. 2018
Hi dudes, I have 2 vectors multiplied by a 1e4*1e4 matrix as below example:
A = 1:1:10000;
B = rand(10000);
C = (1:1:10000)';
an I have a result matrix like D, each array of which are obtained by the multiplication of these matrices as below:
D(each array) = A*(B*C);
the size of D matrix is 11*11 or larger, meaning that I should do this multiplication 121 times or more consuming large memory and time. Any Idea how to optimize the multiplication process?
  19 Kommentare
behzad
behzad am 22 Okt. 2018
"... This is a most pertinent..."
Unfortunately I am not familiar with c programming enough. But I try to find out what is going on in the mex file.
James Tursa
James Tursa am 22 Okt. 2018
Bearbeitet: James Tursa am 22 Okt. 2018
So, would you way that your pseudo-code is really something like this:
A = zeros(11,11); D = A;
F = some large matrix (fixed value for the loop)
k1 = some integer (fixed value for the loop)
k2 = some integer (fixed value for the loop)
for q = 1:200
for p = 1:1:121
A = rand(1,10000); % some calculation that changes each time
B = F(k1+1:k1+10000,k2+1:k2+10000);
C = rand(10000,1); % some calculation that changes each time
D(p) = A*(B*C);
end
A = D + A;
end
I.e., B can obviously be pulled out of the loop in the above code and the data copy only done once. It is critical to know which things change during the loop and which things don't.
We can help you with the C mex stuff, but only if it really makes sense, and we won't know that until we know exactly how the pseudo code looks.

Melden Sie sich an, um zu kommentieren.

Antworten (2)

Matt J
Matt J am 22 Okt. 2018
Bearbeitet: Matt J am 22 Okt. 2018
One possibility might be to zero-pad A and C, embedding them in larger sparse vectors to be multiplied with F. This way you don't have to pull B out of F and allocate separate memory for it.
Za=spalloc(1,size(F,1), 1e4);
Zc=spalloc(size(F,2),1,1e4);
for p = 1:121
A = ...
Apad=Za;
Apad(k1+1:k1+1e4)=A;
C=...
Cpad=Zc;
Cpad(k2+1:k2+1e4)=C;
D(p) = Apad*(F*Cpad);
end
  9 Kommentare
Matt J
Matt J am 23 Okt. 2018
OK, how about this:
N=4e4+1;
F=ones(N);
x=ones(1e4,1); x(N)=0;
xs=sparse(x);
tic; %full
ans=x.'*(F*x)+7;
toc;
%Elapsed time is 0.428139 seconds.
tic; %sparse
ans=xs.'*(F*xs)+7;
toc;
%Elapsed time is 0.374981 seconds.
Bruno Luong
Bruno Luong am 23 Okt. 2018
The result with my PC on your code
FULL: Elapsed time is 0.278291 seconds.
SPARSE: Elapsed time is 0.360029 seconds.
Of course you can try to increase N where at the limit become favorable more and more to sparse.

Melden Sie sich an, um zu kommentieren.


Bruno Luong
Bruno Luong am 22 Okt. 2018
Bearbeitet: Bruno Luong am 24 Okt. 2018
If you are using R2018a/b you can use the MEX file attached here to avoid forming B. The matrix-vector product is replaced by a loop on vector x vector, it can be slower than MATLAB (twice according to my test).
[m,n] = size(F);
AFk = zeros(1,size(C,1));
for k=1:length(AFk)
Fk = mxCreateSharedMatrix2018(F,k1+(k2+k-1)*m,size(A,2),1);
AFk(k) = A*Fk;
end
mxUnshareMatrix2018(Fk,[],1);
clear Fk
D = AFk*C; % or set D(k1,k2)?
  2 Kommentare
Jan
Jan am 24 Okt. 2018
@Bruno: The link is dead.
Bruno Luong
Bruno Luong am 24 Okt. 2018
OK Jan, I attached the code directly

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Loops and Conditional Statements finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by