solving 4 nonlinear equations with 4 variables
14 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi there,
I am attempting to solve 4 nonlinear equations with 4 variables
I have x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,v,t1,t2,t3,t4
(x0-x1)^2+(y0-y1)^2+(z0-z1)^2-(v*T0)^2-2*(v*T0*v*t1)-(v*t1)^2=0
(x0-x2)^2+(y0-y2)^2+(z0-z2)^2-(v*T0)^2-2*(v*T0*v*t2)-(v*t2)^2=0
(x0-x3)^2+(y0-y3)^2+(z0-z3)^2-(v*T0)^2-2*(v*T0*v*t3)-(v*t3)^2=0
(x0-x4)^2+(y0-y3)^2+(z0-z4)^2-(v*T0)^2-2*(v*T0*v*t4)-(v*t4)^2=0
I need to get x0,y0,z0, and T0.
could you please help me in clarifying the appropriate method.
thanks.
1 Kommentar
Stephan
am 14 Okt. 2018
Is y3 correct in equation 4?:
(x0-x4)^2+(y0-y3)^2+(z0-z4)^2-(v*T0)^2-2*(v*T0*v*t4)-(v*t4)^2=0
I suspect it should be y4.
Antworten (1)
Stephan
am 14 Okt. 2018
Bearbeitet: Stephan
am 14 Okt. 2018
Hi,
Here is an example for your case with some fantasy values:
solve_nonlinear_system
function solve_nonlinear_system
% Insert your known values here - fantasy values for showing how to use fsolve:
x1 = 12;
y1 = 15;
z1 = 10;
x2 = 20;
y2 = 25;
z2 = 22;
x3 = 38;
y3 = 41;
z3 = 37;
x4 = 62;
y4 = 62;
z4 = 58;
v = 15;
t1 = 10;
t2 = 40;
t3 = 65;
t4 = 10;
% Initial solution for fsolve:
x_init = [1 1 1 1];
% call fsolve:
sol = fsolve(@system_equations,x_init);
% show results:
fprintf('x0 = %.5f,\ny0 = %.5f,\nz0 = %.5f and\nT0 = %.5f\n', sol(1),sol(2),sol(3),sol(4))
% Your objective function:
function F = system_equations(x)
x0 = x(1);
y0 = x(2);
z0 = x(3);
T0 = x(4);
F = [(x0-x1)^2+(y0-y1)^2+(z0-z1)^2-(v*T0)^2-2*(v*T0*v*t1)-(v*t1)^2,...
(x0-x2)^2+(y0-y2)^2+(z0-z2)^2-(v*T0)^2-2*(v*T0*v*t2)-(v*t2)^2,...
(x0-x3)^2+(y0-y3)^2+(z0-z3)^2-(v*T0)^2-2*(v*T0*v*t3)-(v*t3)^2,...
(x0-x4)^2+(y0-y4)^2+(z0-z4)^2-(v*T0)^2-2*(v*T0*v*t4)-(v*t4)^2];
end
end
If you replace the values by yours it should work properly.
NOTE: I guess there is a typo i your 4th equation - i would expect it should be y4 not y3 in:
(x0-x4)^2+(y0-y3)^2+(z0-z4)^2-(v*T0)^2-2*(v*T0*v*t4)-(v*t4)^2=0
Best regards
Stephan
0 Kommentare
Siehe auch
Kategorien
Mehr zu Systems of Nonlinear Equations finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!