fsolve + fminbnd combination... Problem !
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Good evening to everybody. My problem is the following:
I want to solve a non-linear equation G(r)-(t-texp)=0 for the variable r with the following complications:
- r is in the upper limit of a definite integral of the integrand F(x).
-"texp" is a 1x10 array experimental points.
- t, which is another variable, are the minimums of another function H defined itself by G, H[t, G(r)].
I am not sure about the combination of algorithms that I must use. I have tried this scheme:
x0=ones(1,10)
rteor=@(r,t) fsolve(integral(G(x),1,r)-(t-texp),x0);
t = fminbnd(@(r,t) H,lb,up);
, but it does not work. I am almost sure fsolve is not well written. I have tried to make combinations with arrayfun inside fsolve, but with no success. I think it is a problem of dimensions and/or declaring variables. Can anybody help me please?
Thanks !!!
2 Kommentare
Matt J
am 5 Okt. 2018
Bearbeitet: Matt J
am 5 Okt. 2018
So r is a scalar and t is a function of r through the equation
t(r) = argmin_z H(z,G(r) )
That means you have 10 equations in one unknown, r. How do you expect to satisfy 10 different equations with only 1 degree of freedom?
Or, do you mean you are looking for 10 different r(i), corresponding to each texp(i) separately?
Antworten (1)
Matt J
am 5 Okt. 2018
Bearbeitet: Matt J
am 5 Okt. 2018
This might be what you want.
G=@(r) integral( @F,1,r);
t=@(r) fminbnd(@(z) H(z,G(r)),lb,up);
for i=1:10
r_solution(i) = fzero(@(r) G(r)-(t(r)-texp(i)) , r0 );
end
11 Kommentare
Torsten
am 9 Okt. 2018
And you claim that
2 - The equation I have is not I(t), but I[r_teor(t)], where r_teor(t) is in the form t(r_teor), being "r_teor" in an upper integration limit.
is not muddled ? Nobody is able to understand what you write here.
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!