fsolve + fminbnd combination... Problem !

2 Ansichten (letzte 30 Tage)
Sergio Quesada
Sergio Quesada am 5 Okt. 2018
Kommentiert: Torsten am 9 Okt. 2018
Good evening to everybody. My problem is the following:
I want to solve a non-linear equation G(r)-(t-texp)=0 for the variable r with the following complications:
- r is in the upper limit of a definite integral of the integrand F(x).
-"texp" is a 1x10 array experimental points.
- t, which is another variable, are the minimums of another function H defined itself by G, H[t, G(r)].
I am not sure about the combination of algorithms that I must use. I have tried this scheme:
x0=ones(1,10)
rteor=@(r,t) fsolve(integral(G(x),1,r)-(t-texp),x0);
t = fminbnd(@(r,t) H,lb,up);
, but it does not work. I am almost sure fsolve is not well written. I have tried to make combinations with arrayfun inside fsolve, but with no success. I think it is a problem of dimensions and/or declaring variables. Can anybody help me please?
Thanks !!!
  2 Kommentare
Matt J
Matt J am 5 Okt. 2018
Bearbeitet: Matt J am 5 Okt. 2018
So r is a scalar and t is a function of r through the equation
t(r) = argmin_z H(z,G(r) )
That means you have 10 equations in one unknown, r. How do you expect to satisfy 10 different equations with only 1 degree of freedom?
Or, do you mean you are looking for 10 different r(i), corresponding to each texp(i) separately?
Sergio Quesada
Sergio Quesada am 6 Okt. 2018
Bearbeitet: Sergio Quesada am 6 Okt. 2018
Thank you for your answer, Matt. Yes, r is an scalar, and for each value of r, I want 10 different solutions G(r) - (texp-t) = 0, to be solve, each one for each value of texp. I call these solutions "rteor". I am trying this now:
rteor = @(r,t) fsolve(@(r) arrayfun (@(T) integral(F,1,r)-(T-t),texp), x0)
t = fminbnd(H(r,t),6e-3,t1-5e-5,options);
, with no results

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Matt J
Matt J am 5 Okt. 2018
Bearbeitet: Matt J am 5 Okt. 2018
This might be what you want.
G=@(r) integral( @F,1,r);
t=@(r) fminbnd(@(z) H(z,G(r)),lb,up);
for i=1:10
r_solution(i) = fzero(@(r) G(r)-(t(r)-texp(i)) , r0 );
end
  11 Kommentare
Sergio Quesada
Sergio Quesada am 9 Okt. 2018
Bearbeitet: Sergio Quesada am 9 Okt. 2018
Yes, Matt. I am continous changing the program because I am trying to solve it. The problem is not muddled at all:
1- I have a collection of experimental points (texp, Iexp) that I want to fit.
2 - The equation I have is not I(t), but I[r_teor(t)], where r_teor(t) is in the form t(r_teor), being "r_teor" in an upper integration limit.
As simple as that. This is my last code tried:
nombre='C2';t0=6.00E-3;FC=4.24E-1;a=6.05;FD=8.17E-4;Io=15.53;V=25;
fID=fopen('Para_Leer_C2_2219_ptos.txt','r');
Columnexpi=1;Columnexpf=10;
formatSpec='%f %f'; sizeSpec=[2,Inf];
datos=fscanf(fID,formatSpec,sizeSpec); close('all');N=Columnexpf-Columnexpi+1;
texp=datos(1, Columnexpi:Columnexpf);Iexp=datos(2, Columnexpi:Columnexpf); t1=texp(1);
F=@(x) FC.*exp(-(V.*a)./(30.*x.*log(x))); part=1e-3;
for i=1:N
t=@(i) (1+(5.*((texp(i)-t0).^0.25)))
r_teor=@(i) fsolve(Int(r)-(t(i)-texp(i)), inpts(i),options);
L=@(r) 1:part:rteor(i);
me=@(r) arrayfun(F,L(r)); ue=@(r) F(max(L(r)));
Int=@(r) part.*(sum(me(r))-(ue(r)./2));
options = optimoptions('fsolve','Display','none');
Ifar=@(i)(FD./FC).*(r_teor(i).*exp((V.*a)./(30.*r_teor(i).*log(r_teor(i)))));
Itrans=@(i) Io./((r_teor(i)).^4);
Itotal=@(i) Ifar(i)+Itrans(i);
SumError=@(i) sum((Itotal(i)-Iexp).^2);
options = optimset('Display','iter','TolX',1e-4,'PlotFcns','@optimplotx');
t= fminbnd(SumError(i),6e-3,t1-5e-5,options);
end
Torsten
Torsten am 9 Okt. 2018
And you claim that
2 - The equation I have is not I(t), but I[r_teor(t)], where r_teor(t) is in the form t(r_teor), being "r_teor" in an upper integration limit.
is not muddled ? Nobody is able to understand what you write here.

Melden Sie sich an, um zu kommentieren.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by