How to obtain all the solutions of the equation in pure numerical calculation?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
(kz)=det(tuu) is a polynomial of kz generated through the determinant of matrix tuu. Now, I want to get all the solutions of dtuu(kz)==0, and because the power of kz is 10, there will be 10 solutions. vpasolve function can get all the solutions, but it can only deal with symbolic equation. How to obtain all the solutions of dtuu(kz)==0 in pure numerical calculation? Many thanks!
The codes of dtuu(kz) are as following:
function U=dtuu(kz)
x=0.1;
y=0.2;
m = 2;
vh = 4;
mu = 11;
delta = 8;
HBAR = 1.05457266e-34;
ME = 9.1093897e-31;
ELEC = 1.60217733e-19;
Kh = 2.106;
vKh = [0,0,0;Kh,0,0;-Kh,0,0;0,Kh,0;0,-Kh,0];
kc = sqrt(2.*ME.*ELEC/HBAR^2).*1e-10;
ku = kc.*sqrt(mu+delta);
kd = kc.*sqrt(mu-delta);
a3 = [pi/Kh,pi/Kh,sqrt(2).*pi/Kh];
kuu =[-ku.*sin(x).*cos(y), -ku.*sin(x).*sin(y), kz];
n=0:m;
for p=1:5;
for q=1:5;
tuu(p,q)= (sum((kuu + vKh(p,:)).^2)-ku^2).*(p==q)+ kc^2*vh*sum(exp(i.*n.*sum((vKh(q,:)-vKh(p,:)).*a3)))/(m+1).*(p~=q);
end
end
U=det(tuu);
end
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!