regressionLayer中での計算について
7 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Kenta
am 27 Sep. 2018
Bearbeitet: Tohru Kikawada
am 28 Sep. 2018
regressionLayer中で、どのような計算を行い、回帰を行っているかを知りたいです。(https://jp.mathworks.com/help/deeplearning/ref/regressionlayer.html) 例えば、畳み込みニューラル ネットワークを使用して回帰モデルにあてはめ、定量的な予測する場合(例:https://jp.mathworks.com/help/deeplearning/examples/train-a-convolutional-neural-network-for-regression.html)、畳み込み層などから抽出した特徴量に対して最小二乗法による線形回帰を行い、そこで得られた最適な式を用いて回帰予測を行っている、という解釈で正しいでしょうか。
0 Kommentare
Akzeptierte Antwort
Tohru Kikawada
am 28 Sep. 2018
Bearbeitet: Tohru Kikawada
am 28 Sep. 2018
Deep Learning Toolboxの RegressionOutputLayer では損失関数を平均二乗誤差として定義しています。したがって、 畳み込み層、全結合層などの出力値と真値の平均二乗誤差が最小になるように、誤差逆伝搬アルゴリズムで各フィルタの重みやバイアスが調整されます。誤差逆伝搬アルゴリズム(ソルバー)がどのように係数を更新するかについては 確率的勾配降下法 の項目をご覧ください。
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!