How can I improve my prediction accuracy (93%) using NEWRBE function because my target consists of 0's or 1's?

1 Ansicht (letzte 30 Tage)
Hi, I am trying to get 100 accuracy for predicted data. However, I am getting 93.75. I am using NEWRBE function because my targets are 0's or 1's in the output. I would highly appreciate, if anyone could guide me on this problem.
details about my database:
[M N] = size(in); %[18 258]
[I N] = size(out); %[1 258]
net = newrbe(in,out,1e-05);
y = sim(net,in)';
100-100*sum(abs(y'-out))/length(out)
ANS = 100. %accuracy is 100 when i am not using prediction.
When i divide the data set that is 75% is trained and 25% is untrained and used as prediction. following is the result.
[m n] = size(in1) % trained data, m =18 and n = 194
newrbe(in1,out1,1e-05)
y = sim(net,in1)';
100-100*sum(abs(y'-out1))/length(out1)
ANS = 100. (accuracy is still 100).
However, when i predict rest of the data I get accuracy of 93.
[m n] = size(in2); %untrained data m = 18 and n = 64
y = sim(net,in2)';
100-100*sum(abs(y'-out2))/length(out2)
ANS = 93.75
When i check figures. in trained network, all 0's and 1's are matched perfectly to outputs. But in untrained network 0's are still 1's (error). HOW TO FIX, SUCH THAT I GET ACCURATE RESULT USING NEWRBE OR NEWRB??
figure(1) shows trained network and figure(2) shows predicted network result (untrained).

Antworten (0)

Kategorien

Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange

Produkte


Version

R2017a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by